data.py 31.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
"""Basic data types and related functions used in SNAKES
"""

import operator, inspect
from snakes.compat import *
from snakes import DomainError
from snakes.hashables import hdict
from snakes.pnml import Tree

def cross (sets) :
    """Cross-product of some iterable collections (typically, `list`
    or `set`).

    >>> list(cross([[1, 2], [3, 4, 5]]))
    [(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)]
    >>> list(cross([[1, 2], [3, 4, 5], [6, 7, 8, 9]]))
    [(1, 3, 6), (1, 3, 7), (1, 3, 8), (1, 3, 9), (1, 4, 6), (1, 4, 7),
     (1, 4, 8), (1, 4, 9), (1, 5, 6), (1, 5, 7), (1, 5, 8), (1, 5, 9),
     (2, 3, 6), (2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 4, 6), (2, 4, 7),
     (2, 4, 8), (2, 4, 9), (2, 5, 6), (2, 5, 7), (2, 5, 8), (2, 5, 9)]
    >>> list(cross([[], [1]]))
    []

    @param sets: the sets of values to use
    @type sets: `iterable`
    @return: an iterator over the tuples in the cross-product
    @rtype: `generator`
    """
    if len(sets) == 0 :
        pass
    elif len(sets) == 1 :
        for item in sets[0] :
            yield (item,)
    else :
        for item in sets[0] :
            for others in cross(sets[1:]) :
                yield (item,) + others

def iterate (value) :
    """Like Python's builtin `iter` but consider strings as atomic.

    >>> list(iter([1, 2, 3]))
    [1, 2, 3]
    >>> list(iterate([1, 2, 3]))
    [1, 2, 3]
    >>> list(iter('foo'))
    ['f', 'o', 'o']
    >>> list(iterate('foo'))
    ['foo']

    @param value: any object
    @type value: `object`
    @return: an iterator on the elements of `value` if is is iterable
        and is not string, an iterator on the sole `value` otherwise
    @rtype: `generator`
    """
    if isinstance(value, str) :
        return iter([value])
    else :
        try :
            return iter(value)
        except TypeError :
            return iter([value])

class WordSet (set) :
    """A set of words being able to generate fresh words.
    """
    def fresh (self, add=False, min=1, base="",
               allowed="abcdefghijklmnopqrstuvwxyz") :
        """Create a fresh word (ie, which is not in the set).

        >>> w = WordSet(['foo', 'bar'])
        >>> list(sorted(w))
        ['bar', 'foo']
        >>> w.fresh(True, 3)
        'aaa'
        >>> list(sorted(w))
        ['aaa', 'bar', 'foo']
        >>> w.fresh(True, 3)
        'baa'
        >>> list(sorted(w))
        ['aaa', 'baa', 'bar', 'foo']

        @param add: add the created word to the set if `add=True`
        @type add: `bool`
        @param min: minimal length of the new word
        @type min: `int`
        @param allowed: characters allowed in the new word
        @type allowed: `str`
        @param base: prefix of generated words
        @type base: `str`
        """
        if base :
            result = [base] + [allowed[0]] * max(0, min - len(base))
            if base in self :
                result.append(allowed[0])
                pos = len(result) - 1
            elif len(base) < min :
                pos = 1
            else :
                pos = 0
        else :
            result = [allowed[0]] * min
            pos = 0
        while "".join(result) in self :
            for c in allowed :
                try :
                    result[pos] = c
                except IndexError :
                    result.append(c)
                if "".join(result) not in self :
                    break
            pos += 1
        if add :
            self.add("".join(result))
        return "".join(result)

class MultiSet (hdict) :
    """Set with repetitions, ie, function from values to integers.

    MultiSets support various operations, in particular: addition
    (`+`), substraction (`-`), multiplication by a non negative
    integer (`*k`), comparisons (`<`, `>`, etc.), length (`len`).
    """
    def __init__ (self, values=[]) :
        """Initialise the multiset, adding values to it.

        >>> MultiSet([1, 2, 3, 1, 2])
        MultiSet([...])
        >>> MultiSet()
        MultiSet([])

        @param values: a single value or an iterable collection of
            values (strings are not iterated)
        @type values: `object`
        """
        self.add(values)
    def copy (self) :
        """Copy a `MultiSet`

        >>> m1 = MultiSet([1, 2, 3, 1, 2])
        >>> m2 = m1.copy()
        >>> m1 == m2 and m1 is not m2
        True

        @return: a copy of the multiset
        @rtype: `MultiSet`
        """
        result = MultiSet()
        result.update(self)
        return result
    __pnmltag__ = "multiset"
    # apidoc skip
    def __pnmldump__ (self) :
        """
        >>> MultiSet([1, 2, 3, 4, 1, 2]).__pnmldump__()
        <?xml version="1.0" encoding="utf-8"?>
        <pnml>
         <multiset>
          <item>
           <value>
            <object type="int">
            ...
            </object>
           </value>
           <multiplicity>
           ...
           </multiplicity>
          </item>
          <item>
           <value>
            <object type="int">
            ...
            </object>
           </value>
           <multiplicity>
           ...
           </multiplicity>
          </item>
          <item>
           <value>
            <object type="int">
            ...
            </object>
           </value>
           <multiplicity>
           ...
           </multiplicity>
          </item>
          <item>
           <value>
            <object type="int">
            ...
            </object>
           </value>
           <multiplicity>
           ...
           </multiplicity>
          </item>
         </multiset>
        </pnml>
        """
        nodes = []
        for value in hdict.__iter__(self) :
            nodes.append(Tree("item", None,
                              Tree("value", None, Tree.from_obj(value)),
                              Tree("multiplicity", str(self[value]))))
        return Tree(self.__pnmltag__, None, *nodes)
    # apidoc skip
    @classmethod
    def __pnmlload__ (cls, tree) :
        """Load a multiset from its PNML representation

        >>> t = MultiSet([1, 2, 3, 4, 1, 2]).__pnmldump__()
        >>> MultiSet.__pnmlload__(t)
        MultiSet([...])
        """
        result = cls()
        for item in tree :
            times = int(item.child("multiplicity").data)
            value = item.child("value").child().to_obj()
            result._add(value, times)
        return result
    def _add (self, value, times=1) :
        """Add a single value `times` times.

        @param value: the value to add
        @type value: `object`
        @param times: the number of times that `value` has to be added
        @type times: non negative `int`
        @raise ValueError: when `times` is negative
        """
        if times < 0 :
            raise ValueError("negative values are forbidden")
        try :
            self[value] += times
        except KeyError :
            self[value] = times
    def add (self, values, times=1) :
        """Add values to the multiset.

        >>> m = MultiSet()
        >>> m.add([1, 2, 2, 3], 2)
        >>> list(sorted(m.items()))
        [1, 1, 2, 2, 2, 2, 3, 3]
        >>> m.add(5, 3)
        >>> list(sorted(m.items()))
        [1, 1, 2, 2, 2, 2, 3, 3, 5, 5, 5]

        @param values: the values to add or a single value to add
        @type values: `object`
        @param times: the number of times each value should be added
            (must be non-negative)
        @type times: `int`
        @raise ValueError: when `times` is negative
        """
        self.__mutable__()
        for value in iterate(values) :
            self._add(value, times)
    def _remove (self, value, times=1) :
        """Remove a single value `times` times.

        @param value: the value to remove
        @type value: any object
        @param times: the number of times that `value` has to be
            removed
        @type times: non negative `int`
        @raise ValueError: when `times` is negative
        """
        if times < 0 :
            raise ValueError("negative values are forbidden")
        if times > self.get(value, 0) :
            raise ValueError("not enough occurrences")
        self[value] -= times
        if self[value] == 0 :
            del self[value]
    def remove (self, values, times=1) :
        """Remove values to the multiset.

        >>> m = MultiSet([1, 2, 2, 3] * 2)
        >>> list(sorted(m.items()))
        [1, 1, 2, 2, 2, 2, 3, 3]
        >>> m.remove(2, 3)
        >>> list(sorted(m.items()))
        [1, 1, 2, 3, 3]
        >>> m.remove([1, 3], 2)
        >>> list(sorted(m.items()))
        [2]

        @param values: the values to remove or a single value to
            remove
        @type values: `object`
        @param times: the number of times each value should be removed
            (must be non negative)
        @type times: `int`
        @raise ValueError: when `times` is negative
        """
        self.__mutable__()
        for value in iterate(values) :
            self._remove(value, times)
    def __call__ (self, value) :
        """Number of occurrences of `value`.

        >>> m = MultiSet([1, 1, 2, 3, 3, 3])
        >>> m(1), m(2), m(3), m(4)
        (2, 1, 3, 0)

        @param value: the value the count
        @type value: `object`
        @rtype: `int`
        """
        return self.get(value, 0)
    def __iter__ (self) :
        """Iterate over the values, _including repetitions_. Use
        `MultiSet.keys` to ignore repetitions.

        >>> list(sorted(iter(MultiSet([1, 2, 3, 1, 2]))))
        [1, 1, 2, 2, 3]

        @return: an iterator on the elements
        @rtype: `generator`
        """
        for value in dict.__iter__(self) :
            for count in range(self[value]) :
                yield value
    def items (self) :
        """Return the list of items with repetitions. The list without
        repetitions can be retrieved with `MultiSet.key`.

        >>> m = MultiSet([1, 2, 2, 3])
        >>> list(sorted(m.items()))
        [1, 2, 2, 3]
        >>> list(sorted(m.keys()))
        [1, 2, 3]

        @return: list of items including repetitions
        @rtype: `list`
        """
        return list(iter(self))
    def __str__ (self) :
        """Return a simple string representation of the multiset

        >>> str(MultiSet([1, 2, 2, 3]))
        '{...}'

        @return: simple string representation of the multiset
        @rtype: `str`
        """
        return "{%s}" % ", ".join(repr(x) for x in self)
    def __repr__ (self) :
        """Return a string representation of the multiset that is
        suitable for `eval`

        >>> repr(MultiSet([1, 2, 2, 3]))
        'MultiSet([...])'

        @return: precise string representation of the multiset
        @rtype: `str`
        """
        return "MultiSet([%s])" % ", ".join(repr(x) for x in self)
    def __len__ (self) :
        """Return the number of elements, _including repetitions_.

        >>> len(MultiSet([1, 2] * 3))
        6

        @rtype: `int`
        """
        if self.size() == 0 :
            return 0
        else :
            return reduce(operator.add, self.values())
    def size (self) :
        """Return the number of elements, _excluding repetitions_.

        >>> MultiSet([1, 2] * 3).size()
        2

        @rtype: `int`
        """
        return dict.__len__(self)
    def __add__ (self, other) :
        """Adds two multisets.

        >>> MultiSet([1, 2, 3]) + MultiSet([2, 3, 4])
        MultiSet([...])

        @param other: the multiset to add
        @type other: `MultiSet`
        @rtype: `MultiSet`
        """
        result = self.copy()
        for value, times in dict.items(other) :
            result._add(value, times)
        return result
    def __sub__ (self, other) :
        """Substract two multisets. The second multiset must be
        smaller than the first one.

        >>> MultiSet([1, 2, 3]) - MultiSet([2, 3])
        MultiSet([1])
        >>> MultiSet([1, 2, 3]) - MultiSet([2, 3, 4])
        Traceback (most recent call last):
        ...
        ValueError: not enough occurrences

        @param other: the multiset to substract
        @type other: `MultiSet`
        @rtype: `MultiSet`
        @raise ValueError: when the second multiset is not smaller
        """
        result = self.copy()
        for value, times in dict.items(other) :
            result._remove(value, times)
        return result
    def __mul__ (self, other) :
        """Multiplication by a non-negative integer.

        >>> MultiSet([1, 2]) * 3 == MultiSet([1, 2] * 3)
        True

        @param other: the integer to multiply
        @type other: non-negative `int`
        @rtype: `MultiSet`
        @raise ValueError: when `other` is negative
        """
        if other < 0 :
            raise ValueError("negative values are forbidden")
        elif other == 0 :
            return MultiSet()
        else :
            result = self.copy()
            for value in self.keys() :
                result[value] *= other
            return result
    __hash__ = hdict.__hash__
    def __eq__ (self, other) :
        """Test for equality.

        >>> MultiSet([1, 2, 3]*2) == MultiSet([1, 2, 3]*2)
        True
        >>> MultiSet([1, 2, 3]) == MultiSet([1, 2, 3, 3])
        False

        @param other: the multiset to compare with
        @type other: `MultiSet`
        @rtype: `bool`
        """
        if len(self) != len(other) :
            return False
        else :
            for val in self :
                try :
                    if self[val] != other[val] :
                        return False
                except (KeyError, TypeError) :
                    return False
        return True
    def __ne__ (self, other) :
        """Test for difference.

        >>> MultiSet([1, 2, 3]*2) != MultiSet([1, 2, 3]*2)
        False
        >>> MultiSet([1, 2, 3]) != MultiSet([1, 2, 3, 3])
        True

        @param other: the multiset to compare with
        @type other: `MultiSet`
        @rtype: `bool`
        """
        return not(self == other)
    def __lt__ (self, other) :
        """Test for strict inclusion. A multiset `A` is strictly
        included in a multiset `B` iff every element in `A` is also in
        `B` but less repetitions `A` than in `B`.

        >>> MultiSet([1, 2, 3]) < MultiSet([1, 2, 3, 4])
        True
        >>> MultiSet([1, 2, 3]) < MultiSet([1, 2, 3, 3])
        True
        >>> MultiSet([1, 2, 3]) < MultiSet([1, 2, 3])
        False
        >>> MultiSet([1, 2, 3]) < MultiSet([1, 2])
        False
        >>> MultiSet([1, 2, 2]) < MultiSet([1, 2, 3, 4])
        False

        @param other: the multiset to compare with
        @type other: `MultiSet`
        @rtype: `bool`
        """
        if not set(self.keys()) <= set(other.keys()) :
            return False
        result = False
        for value, times in dict.items(self) :
            count = other(value)
            if times > count :
                return False
            elif times < count :
                result = True
        return result or (dict.__len__(self) < dict.__len__(other))
    def __le__ (self, other) :
        """Test for inclusion.

        >>> MultiSet([1, 2, 3]) <= MultiSet([1, 2, 3, 4])
        True
        >>> MultiSet([1, 2, 3]) <= MultiSet([1, 2, 3, 3])
        True
        >>> MultiSet([1, 2, 3]) <= MultiSet([1, 2, 3])
        True
        >>> MultiSet([1, 2, 3]) <= MultiSet([1, 2])
        False
        >>> MultiSet([1, 2, 2]) <= MultiSet([1, 2, 3, 4])
        False

        @param other: the multiset to compare with
        @type other: `MultiSet`
        @rtype: `bool`
        """
        if not set(self.keys()) <= set(other.keys()) :
            return False
        for value, times in dict.items(self) :
            count = other(value)
            if times > count :
                return False
        return True
    def __gt__ (self, other) :
        """Test for strict inclusion.

        >>> MultiSet([1, 2, 3, 4]) > MultiSet([1, 2, 3])
        True
        >>> MultiSet([1, 2, 3, 3]) > MultiSet([1, 2, 3])
        True
        >>> MultiSet([1, 2, 3]) > MultiSet([1, 2, 3])
        False
        >>> MultiSet([1, 2]) > MultiSet([1, 2, 3])
        False
        >>> MultiSet([1, 2, 3, 4]) > MultiSet([1, 2, 2])
        False

        @param other: the multiset to compare with
        @type other: `MultiSet`
        @rtype: `bool`
        """
        return other.__lt__(self)
    def __ge__ (self, other) :
        """Test for inclusion.

        >>> MultiSet([1, 2, 3, 4]) >= MultiSet([1, 2, 3])
        True
        >>> MultiSet([1, 2, 3, 3]) >= MultiSet([1, 2, 3])
        True
        >>> MultiSet([1, 2, 3]) >= MultiSet([1, 2, 3])
        True
        >>> MultiSet([1, 2]) >= MultiSet([1, 2, 3])
        False
        >>> MultiSet([1, 2, 3, 4]) >= MultiSet([1, 2, 2])
        False

        @param other: the multiset to compare with
        @type other: `MultiSet`
        @rtype: `bool`
        """
        return other.__le__(self)
    def domain (self) :
        """Return the domain of the multiset, that is, the set of
        elements that occurr at least once in the multiset.

        >>> list(sorted((MultiSet([1, 2, 3, 4]) + MultiSet([1, 2, 3])).domain()))
        [1, 2, 3, 4]

        @return: the set of values in the domain
        @rtype: `set`
        """
        return set(self.keys())

class Substitution (object) :
    """Map names to values or names, equals the identity where not
    defined.

    Substitutions support the `+` operation (union with consistency
    check between the two operands) and the `*` operation which is the
    composition of functions (`(f*g)(x)` is `f(g(x))`).

    Several methods (eg, `image`) return lists instead of sets, this
    avoids the restriction of having only hashable values in a
    substitution image.
    """
    def __init__ (self, *largs, **dargs) :
        """Initialise using a dictionnary as a mapping.

        The expected arguments are any ones acceptables for
        initializing a dictionnary.

        >>> Substitution()
        Substitution()
        >>> Substitution(x=1, y=2)
        Substitution(...)
        >>> Substitution([('x', 1), ('y', 2)])
        Substitution(...)
        >>> Substitution({'x': 1, 'y': 2})
        Substitution(...)
        """
        self._dict = dict(*largs, **dargs)
    # apidoc skip
    def __hash__ (self) :
        """
        >>> hash(Substitution(x=1, y=2)) == hash(Substitution(y=2, x=1))
        True
        """
        # 153913524 = hash('snakes.data.Substitution')
        return reduce(operator.xor,
                      (hash(i) for i in self._dict.items()),
                      153913524)
    def __eq__ (self, other) :
        """Test for equality.

        >>> Substitution(x=1, y=2) == Substitution(y=2, x=1)
        True
        >>> Substitution(x=1, y=2) == Substitution(y=1, x=1)
        False
        """
        try :
            return self._dict == other._dict
        except :
            return False
    def __ne__ (self, other) :
        """Test for inequality.

        >>> Substitution(x=1, y=2) != Substitution(y=2, x=1)
        False
        >>> Substitution(x=1, y=2) != Substitution(y=1, x=1)
        True
        """
        return not self.__eq__(other)
    __pnmltag__ = "substitution"
    # apidoc skip
    def __pnmldump__ (self) :
        """Dumps a substitution to a PNML tree

        >>> Substitution(x=1, y=2).__pnmldump__()
        <?xml version="1.0" encoding="utf-8"?>
        <pnml>
         <substitution>
          <item>
           <name>
           ...
           </name>
           <value>
            <object type="int">
            ...
            </object>
           </value>
          </item>
          <item>
           <name>
           ...
           </name>
           <value>
            <object type="int">
            ...
            </object>
           </value>
          </item>
         </substitution>
        </pnml>

        @return: PNML representation
        @rtype: `snakes.pnml.Tree`
        """
        nodes = []
        for name, value in self._dict.items() :
            nodes.append(Tree("item", None,
                              Tree("name", name),
                              Tree("value", None,
                                   Tree.from_obj(value))))
        return Tree(self.__pnmltag__, None, *nodes)
    # apidoc skip
    @classmethod
    def __pnmlload__ (cls, tree) :
        """Load a substitution from its PNML representation

        >>> t = Substitution(x=1, y=2).__pnmldump__()
        >>> Substitution.__pnmlload__(t)
        Substitution(...)

        @param tree: the PNML tree to load
        @type tree: `snakes.pnml.Tree`
        @return: the substitution loaded
        @rtype: `Substitution`
        """
        result = cls()
        for item in tree :
            name = item.child("name").data
            value = item.child("value").child().to_obj()
            result._dict[name] = value
        return result
    def items (self) :
        """Return the list of pairs `(name, value)` such that the
        substitution maps each `name` to the correspondign `value`.

        >>> Substitution(x=1, y=2).items()
        [('...', ...), ('...', ...)]

        @return: a list of pairs (name, value) for each mapped name
        @rtype: `list`
        """
        return list(self._dict.items())
    def domain (self) :
        """Return the set of mapped names.

        >>> list(sorted(Substitution(x=1, y=2).domain()))
        ['x', 'y']

        @return: the set of mapped names
        @rtype: `set`
        """
        return set(self._dict.keys())
    def image (self) :
        """Return the list of values associated to the names.

        >>> list(sorted(Substitution(x=1, y=2).image()))
        [1, 2]

        @return: the list of values associated to names
        @rtype: `list`
        """
        return list(self._dict.values())
    def __contains__ (self, name) :
        """Test if a name is mapped by the substitution.

        >>> 'x' in Substitution(x=1, y=2)
        True
        >>> 'z' in Substitution(x=1, y=2)
        False

        @param name: the name to test
        @type name: `str` (usually)
        @return: a Boolean indicating whether this name is in the
            domain or not
        @rtype: `bool`
        """
        return name in self._dict
    def __iter__ (self) :
        """Iterate over the mapped names.

        >>> list(sorted(iter(Substitution(x=1, y=2))))
        ['x', 'y']

        @return: an iterator over the domain of the substitution
        @rtype: `generator`
        """
        return iter(self._dict)
    def __str__ (self) :
        """Return a compact string representation.

        >>> str(Substitution(x=1, y=2))
        '{... -> ..., ... -> ...}'

        @return: a simple string representation
        @rtype: `str`
        """
        return "{%s}" % ", ".join(["%s -> %r" % (str(var), val)
                                   for var, val in self.items()])
    def __repr__ (self) :
        """Return a string representation suitable for `eval`.

        >>> repr(Substitution(x=1, y=2))
        'Substitution(...)'

        @return: a precise string representation
        @rtype: `str`
        """
        return "%s(%s)" % (self.__class__.__name__,
                           ", ".join(("%s=%s" % (str(var), repr(val))
                                      for var, val in self.items())))
    def dict (self) :
        """Return the mapping as a dictionnary.

        >>> Substitution(x=1, y=2).dict() == {'x': 1, 'y': 2}
        True

        @return: a dictionnary that does the same mapping as the
            substitution
        @rtype: `dict`
        """
        return self._dict.copy()
    def copy (self) :
        """Return a distinct copy of the mapping.

        >>> s1 = Substitution(x=1, y=2)
        >>> s2 = s1.copy()
        >>> s1 == s2 and s1 is not s2
        True

        @return: a copy of the substitution
        @rtype: `Substitution`
        """
        return Substitution(self.dict())
    def __setitem__ (self, var, value) :
        """Assign an entry to the substitution

        >>> s = Substitution()
        >>> s['x'] = 42
        >>> s
        Substitution(x=42)

        @param var: the name of the variable
        @type var: `str`
        @param value: the value to which `var` is bound
        @type value: `object`
        """
        self._dict[var] = value
    def __getitem__ (self, var) :
        """Return the mapped value.

        >>> s = Substitution(x=1, y=2)
        >>> s['x']
        1
        >>> try : s['z']
        ... except DomainError : print(sys.exc_info()[1])
        unbound variable 'z'

        @param var: the name of the variable
        @type var: `str` (usually)
        @return: the value that `var` maps to
        @rtype: `object`
        @raise DomainError: if `var` does not belong to the domain
        """
        try :
            return self._dict[var]
        except KeyError :
            raise DomainError("unbound variable '%s'" % var)
    def __call__ (self, var) :
        """Return the mapped value or `var` itself if it is not
        mapped.

        >>> s = Substitution(x=1, y=2)
        >>> s('x')
        1
        >>> s('z')
        'z'

        @param var: the name of the variable
        @type var: `str` (usually)
        @return: the value that `var` maps to or `var` itself if it
            does not belong to the domain
        @rtype: `object`
        """
        try :
            return self._dict[var]
        except KeyError :
            return var
    def __add__ (self, other) :
        """Add two substitution.
        Fails with `DomainError` if the two substitutions map a same
        name to different values.

        >>> s = Substitution(x=1, y=2) + Substitution(y=2, z=3)
        >>> s('x'), s('y'), s('z')
        (1, 2, 3)
        >>> try : Substitution(x=1, y=2) + Substitution(y=4, z=3)
        ... except DomainError : print(sys.exc_info()[1])
        conflict on 'y'

        @param other: another substitution
        @type other: `Substitution`
        @return: the union of the substitutions
        @rtype: `Substitution`
        @raise DomainError: when a name is inconsistently mapped
        """
        for var in self :
            if var in other and (self[var] != other[var]) :
                raise DomainError("conflict on '%s'" % var)
        s = self.__class__(self.dict())
        s._dict.update(other.dict())
        return s
    def __mul__ (self, other) :
        """Compose two substitutions.
        The composition of `f` and `g` is such that `(f*g)(x)` is
        `f(g(x))`.

        >>> f = Substitution(a=1, d=3, y=5)
        >>> g = Substitution(b='d', c=2, e=4, y=6)
        >>> h = f*g
        >>> h('a'), h('b'), h('c'), h('d'), h('e'), h('y'), h('x')
        (1, 3, 2, 3, 4, 6, 'x')

        @param other: another substitution
        @type other: `Substitution`
        @return: the composition of the substitutions
        @rtype: `Substitution`
        """
        res = self.copy()
        for var in other :
            res._dict[var] = self(other(var))
        return res
    def restrict (self, domain) :
        """Restrict the substitution to `domain`, ie remove all
        elements that are not in `domain`. Note that `domain` may
        include names that are not in the substitution, they are
        simply ignored.

        >>> s = Substitution(a=1, b=2, c=3, d=4).restrict(['a', 'b', 'z'])
        >>> list(sorted(s.domain()))
        ['a', 'b']

        @param domain: the new domain as a set/list/... of names
        @type domain: `iterable`
        @return: the restricted substitution
        @rtype: `Substitution`
        """
        result = self.copy()
        for name in result.domain() - set(domain) :
            result._dict.pop(name, None)
        return result

class Symbol (object) :
    """A symbol that may be used as a constant
    """
    def __init__ (self, name, export=True) :
        """If `export` is `True`, the created symbol is exported under
        its name. If `export` is `False`, no export is made. Finally,
        if `export` is a string, it specifies the name of the exported
        symbol. Exporting the name is made by adding it to the
        caller's global dict.

        @param name: the name (or value of the symbol)
        @type name: `str`
        @param export: the name under which the symbol is exported
        @type export: `str` or `bool` or `None`

        >>> Symbol('foo')
        Symbol('foo')
        >>> foo
        Symbol('foo')
        >>> Symbol('egg', 'spam')
        Symbol('egg', 'spam')
        >>> spam
        Symbol('egg', 'spam')
        >>> Symbol('bar', False)
        Symbol('bar', False)
        >>> bar
        Traceback (most recent call last):
         ...
        NameError: ...
        """
        self.name = name
        if export is True :
            export = name
        self._export = export
        if export :
            inspect.stack()[1][0].f_globals[export] = self
    __pnmltag__ = "symbol"
    # apidoc skip
    def __pnmldump__ (self) :
        """
        >>> Symbol('egg', 'spam').__pnmldump__()
        <?xml version="1.0" encoding="utf-8"?>
        <pnml>
         <symbol name="egg">
          <object type="str">
           spam
          </object>
         </symbol>
        </pnml>
        >>> Symbol('foo').__pnmldump__()
        <?xml version="1.0" encoding="utf-8"?>
        <pnml>
         <symbol name="foo"/>
        </pnml>
        >>> Symbol('bar', False).__pnmldump__()
        <?xml version="1.0" encoding="utf-8"?>
        <pnml>
         <symbol name="bar">
          <object type="bool">
           False
          </object>
         </symbol>
        </pnml>
        """
        if self.name == self._export :
            children = []
        else :
            children = [Tree.from_obj(self._export)]
        return Tree(self.__pnmltag__, None, *children, **dict(name=self.name))
    # apidoc skip
    @classmethod
    def __pnmlload__ (cls, tree) :
        """
        >>> Symbol.__pnmlload__(Symbol('foo', 'bar').__pnmldump__())
        Symbol('foo', 'bar')
        >>> Symbol.__pnmlload__(Symbol('foo').__pnmldump__())
        Symbol('foo')
        >>> Symbol.__pnmlload__(Symbol('foo', False).__pnmldump__())
        Symbol('foo', False)
        """
        name = tree["name"]
        try :
            export = tree.child().to_obj()
        except :
            export = name
        return cls(name, export)
    def __eq__ (self, other) :
        """Test for equality of two symbols, which is the equality of
        their names.

        >>> Symbol('foo', 'bar') == Symbol('foo')
        True
        >>> Symbol('egg') == Symbol('spam')
        False
        """
        try :
            return (self.__class__.__name__ == other.__class__.__name__
                    and self.name == other.name)
        except AttributeError :
            return False
    def __ne__ (self, other) :
        """Test for inequality.

        >>> Symbol('foo', 'bar') != Symbol('foo')
        False
        >>> Symbol('egg') != Symbol('spam')
        True
        """
        return not (self == other)
    # apidoc skip
    def __hash__ (self) :
        """
        >>> hash(Symbol('foo', 'bar')) == hash(Symbol('foo'))
        True
        """
        return hash((self.__class__.__name__, self.name))
    def __str__ (self) :
        """Short string representation

        >>> str(Symbol('foo'))
        'foo'
        """
        return self.name
    def __repr__ (self) :
        """String representation suitable for `eval`

        >>> Symbol('foo')
        Symbol('foo')
        >>> Symbol('egg', 'spam')
        Symbol('egg', 'spam')
        >>> Symbol('bar', False)
        Symbol('bar', False)
        """
        if self._export == self.name :
            return "%s(%r)" % (self.__class__.__name__, self.name)
        else :
            return "%s(%r, %r)" % (self.__class__.__name__, self.name,
                                   self._export)