NSPDK.cc 56.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
#include "Utility.h"
#include "BaseGraphClass.h"
#include "GraphClass.h"
#include "NSPDK_FeatureGenerator.h"
#include "wrapper.h"
#include "vectors.h"
#include <ctime>
#include <numeric>
#include <list>
#include <stdio.h>

using namespace std;

//---------------------------------------------------------------------------------
string DATE(__DATE__);
const string CREDITS("Name: NeighborhoodSubgraphPaiwiseDistanceKernel\nVersion: 9.2\nProgrammer: Fabrizio Costa\nDate:3 July 2012");
//---------------------------------------------------------------------------------
ofstream LOGF("log", std::ios_base::app);

FlagsService& The_FlagsService = FlagsService::get_instance();

class ParameterWrapperClass {
public:
	ParameterWrapperClass() :
			mGspanInputFileName(""), mSparseBinaryInputFileName(""), mSparseASCIIInputFileName(""), mSparseASCIITestInputFileName(""), mTrainTargetInputFileName(""), mRadiusMax(1), mDistanceMax(4), mMatchingType("hard"), mVerbose(false), mFeatureBitSize(30), mMinKernel(false), mType("nspdk"), mGraphType("UNDIRECTED"), mNormalization(true), mNumNearestNeighbors(10), mNumHashFunctions(250), mSampleSize(10), mNonRedundantFilter(1), mOutputFeatures(false), mOutputAccuracy(false), mOutputFeatureMap(false), mOutputKernel(false), mOutputApproximateKNN(false), mOutputTrueKNN(false), mOutputCluster(false), mOutputApproximateCluster(false), mOutputApproximateKNNPrediction(false), mOutputTrueKNNPrediction(false), mOutputHashEncoding(false), mCaching(true), mTrueSort(true), mEccessNeighbourSizeFactor(10), mHashFactor(1), mNumCenters(10), mSizeThreshold(30), mImbalanceTolerance(1.5), mWhiteListFileName(""), mBlackListFileName(""), mGreyListFileName(""), mMaxIntersectionSize(0), mFractionCenterScan(1), mNumMinHashFunc(50), mMaxSizeBin(.1), mRandSeed(1), mSharedNeighbourhood(false), mFullDensityEstimation(false), mMaxRefinement(100000), mDebug(0) {
	}

	void Usage(string aCommandName) {
		cerr
				<< "Usage: "
				<< aCommandName
				<< endl
				<< "-fg <file name gspan format> for input from file "
				<< endl
				<< "-fsb <file name sparse format binary> for input from file"
				<< endl
				<< "-fsa <file name sparse format ascii> for input from file"
				<< endl
				<< "-fsats <file name sparse format ascii> for input from file for test set"
				<< endl
				<< "-ftrt <file name> for target for train set"
				<< endl
				<< "[-knn <num nearest neighbors> (default: "
				<< mNumNearestNeighbors
				<< ")]"
				<< endl
				<< "-wl <file name for white listed instances ids (1 based)> for data set"
				<< endl
				<< "-bl <file name for black listed instances ids (1 based)> for data set"
				<< endl
				<< "-gl <file name for grey listed instances ids (1 based)> for data set"
				<< endl
				<< "[-oacc flag to output accuracy of approximation (default: "
				<< mOutputAccuracy
				<< ")]"
				<< endl
				<< "[-of flag to output feature encoding (default: "
				<< mOutputFeatures
				<< ")]"
				<< endl
				<< "[-ofm flag to output feature map encoding (default: "
				<< mOutputFeatureMap
				<< ")]"
				<< endl
				<< "[-ok flag to output kernel matrix (default: "
				<< mOutputKernel
				<< ")]"
				<< endl
				<< "[-oaknn flag to output approximate k-nearest neighburs (default: "
				<< mOutputApproximateKNN
				<< ")]"
				<< endl
				<< "[-otknn flag to output true (i.e. implies full kernel matrix evaluation) k-nearest neighburs (default: "
				<< mOutputTrueKNN
				<< ")]"
				<< endl
				<< "[-oc flag to output clusters (default: "
				<< mOutputCluster
				<< ")]"
				<< endl
				<< "[-oac flag to output approximate clusters (default: "
				<< mOutputApproximateCluster
				<< ")]"
				<< endl
				<< "[-nc num centers (default: "
				<< mNumCenters
				<< ")]"
				<< endl
				<< "[-fcs fraction of dataset size to scan for centers (default: "
				<< mFractionCenterScan
				<< ")]"
				<< endl
				<< "[-nhf <num hash functions> for the Locality Sensitive Hashing function (default: "
				<< mNumHashFunctions
				<< ")]"
				<< endl
				<< "[-hf <hash factor> number of signatures to collate (default: "
				<< mHashFactor
				<< ")]"
				<< endl
				<< "[-msb <max size bin > (default: "
				<< mMaxSizeBin
				<< ") (expressed as a fraction of the dataset size)] "
				<< endl
				<< "[-ensf <eccess neighbour size factor> (default: "
				<< mEccessNeighbourSizeFactor
				<< ") (0 to avoid trimming)] "
				<< endl
				<< "[-ss <sample size> for clustering procedure (default: "
				<< mSampleSize
				<< ")]"
				<< endl
				<< "[-mi <maximum number of elements in intersection between center neighborhoods> (default: "
				<< mMaxIntersectionSize
				<< ")]"
				<< endl
				<< "[-oaknnp flag to output approximate knn prediction (default: "
				<< mOutputApproximateKNNPrediction
				<< ")]"
				<< endl
				<< "[-otknnp flag to output true knn prediction (default: "
				<< mOutputTrueKNNPrediction
				<< ")]"
				<< endl
				<< "[-ohe flag to output hash encoding (default: "
				<< mOutputHashEncoding
				<< ")]"
				<< endl
				<< "[-b <feature space bits size> (default: "
				<< mFeatureBitSize
				<< ")]"
				<< endl
				<< "[-R <max radius> (default: "
				<< mRadiusMax
				<< ")]"
				<< endl
				<< "[-D <max distance relations> (default: "
				<< mDistanceMax
				<< ")]"
				<< endl
				<< "[-gt <graph type DIRECTED|UNDIRECTED> (default: "
				<< mGraphType
				<< ")]"
				<< endl
				<< "[-anhf <number of hash functions for abstract> (default: "
				<< mNumMinHashFunc
				<< ")]"
				<< endl
				<< "[-T <nspdk> (default: "
				<< mType
				<< ")]"
				<< endl
				<< "[-t <hard | soft | hard_soft> as neighborhood matching use HARD=exact matching, use SOFT=attribute matching with root identifier as radius 0 neighborhood, use HARD-SOFT=attribute matching with root identifier as full neighborhood encoding (default: "
				<< mMatchingType
				<< ")]"
				<< endl
				<< "[-mink flag to set minimum kernel rather than dot product (default: "
				<< mMinKernel
				<< ")]"
				<< endl
				<< "[-nn flag to de-acivate normalization (default: "
				<< !mNormalization
				<< ")]"
				<< endl
				<< "[-nrt <similarity filtering of redundant centers [0,1]> for clustering procedure (default: "
				<< mNonRedundantFilter
				<< ") (the smaller the less similar the centers)]"
				<< endl
				<< "[-no-cache flag to deactivate caching of kernel value computation (to minimize memory usage) (default: "
				<< !mCaching
				<< ")]"
				<< endl
				<< "[-no-true-sort flag to deactivate sorting approximate neighbours with true kernel computation (default: "
				<< !mTrueSort
				<< ")]"
				<< endl
				<< "[-st <size threshold> (default: "
				<< mSizeThreshold
				<< ")]"
				<< endl
				<< "[-it <imbalance tolerance> (default: "
				<< mImbalanceTolerance
				<< ")]"
				<< endl
				<< "[-v flag for verbose output (default: "
				<< mVerbose
				<< ")]"
				<< endl
				<< "[-rs rand seed (default: "
				<< mRandSeed
				<< ")]"
				<< endl
				<< "[-usn use shared neighbourhood to weight center density (default: "
				<< mSharedNeighbourhood
				<< ")]"
				<< endl
				<< "[-fde perform full density estimation (default: "
				<< mFullDensityEstimation
				<< ")]"
				<< endl
				<< "[-mri <num max refinement iterations> (default: "
				<< mMaxRefinement
				<< ")]"
				<< endl
				<< "[-debug <debug level> for NSPDK data structures (default: "
				<< mDebug
				<< ")]"
				<< endl;
		exit(0);
	}

	void Init(int argc, char** argv) {
		vector<string> options;
		for (int i = 1; i < argc; i++)
			options.push_back(argv[i]);
		for (vector<string>::iterator it = options.begin(); it != options.end(); ++it) {
			if ((*it) == "-h" || (*it) == "--help") Usage(argv[0]);
			else if ((*it) == "-fg") mGspanInputFileName = (*(++it));
			else if ((*it) == "-fsb") mSparseBinaryInputFileName = (*(++it));
			else if ((*it) == "-fsa") mSparseASCIIInputFileName = (*(++it));
			else if ((*it) == "-fsats") mSparseASCIITestInputFileName = (*(++it));
			else if ((*it) == "-ftrt") mTrainTargetInputFileName = (*(++it));
			else if ((*it) == "-wl") mWhiteListFileName = (*(++it));
			else if ((*it) == "-bl") mBlackListFileName = (*(++it));
			else if ((*it) == "-gl") mGreyListFileName = (*(++it));
			else if ((*it) == "-knn") mNumNearestNeighbors = stream_cast<unsigned>(*(++it));
			else if ((*it) == "-ensf") mEccessNeighbourSizeFactor = stream_cast<double>(*(++it));
			else if ((*it) == "-hf") mHashFactor = stream_cast<unsigned>(*(++it));
			else if ((*it) == "-R") mRadiusMax = stream_cast<double>(*(++it));
			else if ((*it) == "-D") mDistanceMax = stream_cast<double>(*(++it));
			else if ((*it) == "-t") mMatchingType = (*(++it));
			else if ((*it) == "-v") mVerbose = true;
			else if ((*it) == "-mink") mMinKernel = true;
			else if ((*it) == "-b") mFeatureBitSize = stream_cast<int>(*(++it));
			else if ((*it) == "-T") mType = (*(++it));
			else if ((*it) == "-gt") mGraphType = (*(++it));
			else if ((*it) == "-of") mOutputFeatures = true;
			else if ((*it) == "-oacc") mOutputAccuracy = true;
			else if ((*it) == "-ofm") mOutputFeatureMap = true;
			else if ((*it) == "-ok") mOutputKernel = true;
			else if ((*it) == "-oaknn") mOutputApproximateKNN = true;
			else if ((*it) == "-otknn") mOutputTrueKNN = true;
			else if ((*it) == "-oaknnp") mOutputApproximateKNNPrediction = true;
			else if ((*it) == "-otknnp") mOutputTrueKNNPrediction = true;
			else if ((*it) == "-ohe") mOutputHashEncoding = true;
			else if ((*it) == "-oc") mOutputCluster = true;
			else if ((*it) == "-oac") mOutputApproximateCluster = true;
			else if ((*it) == "-nn") mNormalization = false;
			else if ((*it) == "-debug") mDebug = stream_cast<int>(*(++it));
			else if ((*it) == "-nhf") mNumHashFunctions = stream_cast<unsigned>(*(++it));
			else if ((*it) == "-ss") mSampleSize = stream_cast<unsigned>(*(++it));
			else if ((*it) == "-nrt") mNonRedundantFilter = stream_cast<double>(*(++it));
			else if ((*it) == "-no-cache") mCaching = false;
			else if ((*it) == "-no-true-sort") mTrueSort = false;
			else if ((*it) == "-nc") mNumCenters = stream_cast<unsigned>(*(++it));
			else if ((*it) == "-fcs") mFractionCenterScan = stream_cast<double>(*(++it));
			else if ((*it) == "-st") mSizeThreshold = stream_cast<unsigned>(*(++it));
			else if ((*it) == "-it") mImbalanceTolerance = stream_cast<double>(*(++it));
			else if ((*it) == "-mi") mMaxIntersectionSize = stream_cast<unsigned>(*(++it));
			else if ((*it) == "-anhf") mNumMinHashFunc = stream_cast<unsigned>(*(++it));
			else if ((*it) == "-msb") mMaxSizeBin = stream_cast<double>(*(++it));
			else if ((*it) == "-rs") mRandSeed = stream_cast<unsigned>(*(++it));
			else if ((*it) == "-usn") mSharedNeighbourhood = true;
			else if ((*it) == "-fde") mFullDensityEstimation = true;
			else if ((*it) == "-mr") mMaxRefinement = stream_cast<unsigned>(*(++it));
			else {
				cerr << "Unrecognized parameter: " << (*it) << "." << endl;
				throw exception();
			}
		}
		if (!(mMatchingType == "hard" || mMatchingType == "soft" || mMatchingType == "hard_soft" || mMatchingType == "multiview" || mMatchingType == "mixed")) {
			cerr << "Wrong value for parameter: -t: " << mMatchingType << endl;
			throw exception();
		}
	}

public:
	string mGspanInputFileName;
	string mSparseBinaryInputFileName;
	string mSparseASCIIInputFileName;
	string mSparseASCIITestInputFileName;
	string mTrainTargetInputFileName;
	double mRadiusMax;
	double mDistanceMax;
	string mMatchingType;
	bool mVerbose;
	int mFeatureBitSize;
	bool mMinKernel;
	string mType;
	string mGraphType;
	bool mNormalization;
	unsigned mNumNearestNeighbors;
	unsigned mNumHashFunctions;
	unsigned mSampleSize;
	double mNonRedundantFilter;
	bool mOutputFeatures;
	bool mOutputAccuracy;
	bool mOutputFeatureMap;
	bool mOutputKernel;
	bool mOutputApproximateKNN;
	bool mOutputTrueKNN;
	bool mOutputCluster;
	bool mOutputApproximateCluster;
	bool mOutputApproximateKNNPrediction;
	bool mOutputTrueKNNPrediction;
	bool mOutputHashEncoding;
	bool mCaching;
	bool mTrueSort;
	double mEccessNeighbourSizeFactor;
	unsigned mHashFactor;
	unsigned mNumCenters;
	unsigned mSizeThreshold;
	double mImbalanceTolerance;
	string mWhiteListFileName;
	string mBlackListFileName;
	string mGreyListFileName;
	unsigned mMaxIntersectionSize;
	double mFractionCenterScan;
	unsigned mNumMinHashFunc;
	double mMaxSizeBin;
	unsigned mRandSeed;
	bool mSharedNeighbourhood;
	bool mFullDensityEstimation;
	unsigned mMaxRefinement;
	int mDebug;
} PARAM_OBJ;

typedef std::tr1::unordered_map<unsigned, int> umap_uint_int;
typedef std::tr1::unordered_map<unsigned, vector<unsigned> > umap_uint_vec_uint;

class NSPDKClass {
protected:
	NSPDK_FeatureGenerator* pmFeatureGenerator;

	vector<SVector> mDataset;
	vector<umap_uint_vec_uint> mBinDataStructure;
	map<pair<unsigned, unsigned>, double> mKernelMap;
	//multimap<unsigned, unsigned> mInvertedIndex;
	umap_uint_vec_uint mSignatureMap;

	double mAlpha;
	vector<double> mApproximateDensityMap;
	vector<double> mTrueDensityMap;
	umap_uint_vec_uint mApproximateNeighborhoodMap;
	vector<unsigned> mIdMap;
	vector<bool> mFilteredHashFunctionList;
	vector<int> mGreyList;
public:
	NSPDKClass(NSPDK_FeatureGenerator* paFeatureGenerator) :
			pmFeatureGenerator(paFeatureGenerator) {
	}

	void Generate(const GraphClass& aG, SVector& oX) {
		//create base graph features
		if (PARAM_OBJ.mType == "abstnspdk") aG.ComputePairwiseDistanceInformation(PARAM_OBJ.mDistanceMax, PARAM_OBJ.mRadiusMax);
		pmFeatureGenerator->generate_feature_vector(aG, oX);
	}

	void InputStringList(const string& aFileName, vector<string>& oStringList) {
		cout << "Reading " << aFileName << endl;
		ifstream fin;
		fin.open(aFileName.c_str());
		if (!fin) throw range_error("Cannot open file:" + aFileName);
		ProgressBar progress_bar;
		while (!fin.eof() && fin.good()) {
			string line;
			getline(fin, line);
			stringstream ss;
			ss << line << endl;
			while (!ss.eof() && ss.good()) {
				string target;
				ss >> target;
				if (target != "") {
					oStringList.push_back(target);
					progress_bar.Count();
				}
			}
		}
		fin.close();
	}

	void InputIntList(const string& aFileName, vector<int>& oList) {
		cout << "Reading " << aFileName << endl;
		ifstream fin;
		fin.open(aFileName.c_str());
		if (!fin) throw range_error("Cannot open file:" + aFileName);
		ProgressBar progress_bar;
		while (!fin.eof() && fin.good()) {
			string line;
			getline(fin, line);
			if (line != "") {
				stringstream ss;
				ss << line;
				int target;
				ss >> target;
				oList.push_back(target);
				progress_bar.Count();
			}
		}
		fin.close();
	}

	void Input() {
		if (PARAM_OBJ.mSparseBinaryInputFileName != "") InputSparse(PARAM_OBJ.mSparseBinaryInputFileName, "binary");
		else if (PARAM_OBJ.mSparseASCIIInputFileName != "") InputSparse(PARAM_OBJ.mSparseASCIIInputFileName, "ascii");
		else if (PARAM_OBJ.mGspanInputFileName != "") {
			if (PARAM_OBJ.mOutputFeatures) {
				Load(PARAM_OBJ.mGspanInputFileName, "direct");
			} else if (PARAM_OBJ.mOutputApproximateCluster) {
				Load(PARAM_OBJ.mGspanInputFileName, "approximate");
			} else {
				Load(PARAM_OBJ.mGspanInputFileName, "memory");
			}
		} else throw range_error("ERROR:No input file name specified");
	}

//DirectProcess true=1 false=0 discard vector=2
	void Load(const string& aInputFileName, const string& aTypeOfProcess) {
		ofstream ofs_f;
		ofstream ofs_fb;
		if (aTypeOfProcess == "direct") {
			string ofname = aInputFileName + ".feature";
			ofs_f.open(ofname.c_str());
			ofname = aInputFileName + ".feature_bin";
			ofs_fb.open(ofname.c_str());
		}

		//read white list
		vector<int> select_list;
		if (PARAM_OBJ.mWhiteListFileName != "") {
			InputIntList(PARAM_OBJ.mWhiteListFileName, select_list);
		}
		//read black list
		if (PARAM_OBJ.mBlackListFileName != "") {
			InputIntList(PARAM_OBJ.mBlackListFileName, select_list);
		}
		//read grey list
		if (PARAM_OBJ.mGreyListFileName != "") {
			InputIntList(PARAM_OBJ.mGreyListFileName, mGreyList);
		}
		set<int> select_list_set;
		select_list_set.insert(select_list.begin(), select_list.end());

		cout << "Reading gspan data and computing features" << endl;
		ifstream fin;
		fin.open(aInputFileName.c_str());
		if (!fin) throw range_error("Cannot open file:" + aInputFileName);
		ProgressBar progress_bar;
		int counter = 1;
		while (!fin.eof()) {
			GraphClass G;
			SetGraphFromFileGSPAN(fin, G);
			SVector x;

			//only if counter id is consistent with white and black list (if they have been specified) then accept the instance
			bool accept_flag = true;
			if (PARAM_OBJ.mWhiteListFileName != "") {
				if (select_list_set.count(counter) > 0) accept_flag = true;
				else accept_flag = false;
			}
			if (PARAM_OBJ.mBlackListFileName != "") {
				if (select_list_set.count(counter) > 0) accept_flag = false;
				else accept_flag = true;
			}

			if (accept_flag == true) {
				Generate(G, x);
				if (aTypeOfProcess == "direct") {
					ofs_f << x;
					x.save(ofs_fb);
				} else if (aTypeOfProcess == "approximate") {
					AddToBinDataStructure(x);
				} else if (aTypeOfProcess == "memory") {
					mDataset.push_back(x);
				} else throw range_error("ERROR:Invalid load mode: <" + aTypeOfProcess + ">");
				mIdMap.push_back(counter);
			}
			progress_bar.Count();
			counter++;
		}
		fin.close();
	}

	void InputSparse(const string& aInputFileName, string aMode) {
		ifstream fin;
		fin.open(aInputFileName.c_str());
		if (!fin) throw range_error("Cannot open file:" + aInputFileName);
		InputSparse(fin, aMode, mDataset);
		fin.close();
	}

	void InputSparse(const string& aInputFileName, string aMode, vector<SVector>& oDataset) {
		ifstream fin;
		fin.open(aInputFileName.c_str());
		if (!fin) throw range_error("Cannot open file:" + aInputFileName);
		InputSparse(fin, aMode, oDataset);
		fin.close();
	}

	void InputSparse(ifstream& aFin, string aMode, vector<SVector>& oDataset) {
		//read white list
		vector<int> select_list;
		if (PARAM_OBJ.mWhiteListFileName != "") {
			InputIntList(PARAM_OBJ.mWhiteListFileName, select_list);
		}
		//read black list
		if (PARAM_OBJ.mBlackListFileName != "") {
			InputIntList(PARAM_OBJ.mBlackListFileName, select_list);
		}
		//read grey list
		if (PARAM_OBJ.mGreyListFileName != "") {
			InputIntList(PARAM_OBJ.mGreyListFileName, mGreyList);
		}
		set<int> select_list_set;
		select_list_set.insert(select_list.begin(), select_list.end());

		cout << "Reading file in " << aMode << " mode" << endl;
		int counter = 1;
		ProgressBar progress_bar;
		while (!aFin.eof() && aFin.good()) {
			SVector x;
			if (aMode == "binary") x.load(aFin);
			else ParseASCIILine2Vector(aFin, x);
			if (InstanceIsValid(x) == true) {
				//only if counter id is consistent with white and black list (if they have been specified) then accept the instance
				bool accept_flag = true;
				if (PARAM_OBJ.mWhiteListFileName != "") {
					if (select_list_set.count(counter) > 0) accept_flag = true;
					else accept_flag = false;
				}
				if (PARAM_OBJ.mBlackListFileName != "") {
					if (select_list_set.count(counter) > 0) accept_flag = false;
					else accept_flag = true;
				}
				if (accept_flag == true) {
					if (PARAM_OBJ.mOutputApproximateCluster) {
						AddToBinDataStructure(x);
					} else {
						oDataset.push_back(x);
					}
					mIdMap.push_back(counter);
				}
				progress_bar.Count();
				counter++;
			} else {
			} //discard non valid instances
		}
	}

	inline void ParseASCIILine2Vector(ifstream& aFin, SVector& aX) {
		string line;
		getline(aFin, line);
		if (line == "") return;
		stringstream ss;
		ss << line << endl;
		while (!ss.eof() && ss.good()) {
			string key_value;
			ss >> key_value;
			size_t limit = key_value.find_first_of(":", 0);
			if (limit != string::npos) { //if the delimiter ':' is found then proceed
				string key = key_value.substr(0, limit);
				string value = key_value.substr(limit + 1, key_value.size());
				unsigned key_int = stream_cast<unsigned>(key);
				double val_real = stream_cast<double>(value);
				aX.set(key_int, val_real);
			}
		}
	}

	inline bool InstanceIsValid(SVector& aX) {
		bool is_valid = false;
		//if (dot(aX,aX)>0) is_valid=true;
		if (aX.sparse_size() > 0) is_valid = true;
		return is_valid;
	}

	void SetGraphFromFileGSPAN(istream& in, GraphClass& oG) {
		//status
		vector<bool> vertex_status;
		vertex_status.push_back(true); //kernel point
		vertex_status.push_back(true); //kind
		vertex_status.push_back(true); //viewpoint
		vertex_status.push_back(false); //dead
		vertex_status.push_back(false); //abstraction

		vector<bool> edge_status;
		edge_status.push_back(false); //edge dead
		edge_status.push_back(false); //edge abstraction_of
		edge_status.push_back(false); //edge part_of

		map<string, int> index_map_nominal_to_real;
		string line;
		getline(in, line);
		assert(line[0]=='t');
		//first line must have as first char a 't'
		static unsigned line_count = 1; //line counter with overall file scope
		while (!in.eof() && in.good() && in.peek() != 't' && getline(in, line)) { //read until next 't' or end of file
			line_count++;
			stringstream ss;
			ss << line << endl;
			char code;
			ss >> code;
			if (code == 'v') {
				//extract vertex id and make map nominal_id -> real_id
				string nominal_vertex_index;
				ss >> nominal_vertex_index;
				unsigned real_vertex_index = oG.InsertVertex();
				index_map_nominal_to_real[nominal_vertex_index] = real_vertex_index;
				//label
				vector<string> vertex_symbolic_attribute_list;
				string label;
				ss >> label;
				vertex_symbolic_attribute_list.push_back(label);

				oG.SetVertexSymbolicAttributeList(real_vertex_index, vertex_symbolic_attribute_list);
				oG.SetVertexStatusAttributeList(real_vertex_index, vertex_status);
				char vertex_abstraction_code = label.at(0);
				if (vertex_abstraction_code == '^') {
					oG.SetVertexKernelPoint(real_vertex_index, false);
					oG.SetVertexAbstraction(real_vertex_index, true);
				}

			} else if (code == 'e') {
				//extract src and dest vertex id
				string nominal_src_index, nominal_dest_index;
				string label;
				ss >> nominal_src_index >> nominal_dest_index >> label;
				if (index_map_nominal_to_real.count(nominal_src_index) == 0) throw range_error("Error in line:" + stream_cast<string>(line_count) + " What: Edge with source endpoint in non decleared vertex with id " + nominal_src_index);
				if (index_map_nominal_to_real.count(nominal_dest_index) == 0) throw range_error("Error in line:" + stream_cast<string>(line_count) + " What: Edge with destination endpoint in non decleared vertex with id " + nominal_dest_index);
				vector<string> edge_symbolic_attribute_list;
				edge_symbolic_attribute_list.push_back(label);
				unsigned real_src_index = index_map_nominal_to_real[nominal_src_index];
				unsigned real_dest_index = index_map_nominal_to_real[nominal_dest_index];
				unsigned edge_index = oG.InsertEdge(real_src_index, real_dest_index);
				oG.SetEdgeSymbolicAttributeList(edge_index, edge_symbolic_attribute_list);

				vector<bool> current_edge_status(edge_status);
				char edge_abstraction_code = label.at(0);
				if (edge_abstraction_code == '^') current_edge_status[1] = true;
				if (edge_abstraction_code == '@') current_edge_status[2] = true;
				oG.SetEdgeStatusAttributeList(edge_index, current_edge_status);

				if (PARAM_OBJ.mGraphType == "UNDIRECTED") {
					unsigned reverse_edge_index = oG.InsertEdge(real_dest_index, real_src_index);
					oG.SetEdgeSymbolicAttributeList(reverse_edge_index, edge_symbolic_attribute_list);
					oG.SetEdgeStatusAttributeList(reverse_edge_index, current_edge_status);
				}
			} else {
			} //NOTE: ignore other markers
		}
		if (PARAM_OBJ.mGraphType == "DIRECTED") {
			unsigned vsize = oG.VertexSize();
			//add a copy of all vertices
			for (unsigned i = 0; i < vsize; i++) {
				unsigned real_vertex_index = oG.InsertVertex();
				assert(real_vertex_index=i+vsize);
				vector<string> r_vertex_symbolic_attribute_list = oG.GetVertexSymbolicAttributeList(i);
				for (unsigned t = 0; t < r_vertex_symbolic_attribute_list.size(); t++) //prepend a prefix to mark the reverse direction
					r_vertex_symbolic_attribute_list[t] = "r." + r_vertex_symbolic_attribute_list[t];
				oG.SetVertexSymbolicAttributeList(real_vertex_index, r_vertex_symbolic_attribute_list);
				oG.SetVertexStatusAttributeList(real_vertex_index, oG.GetVertexStatusAttributeList(i)); //assign original status vector
			}
			//copy all edges swapping src with dest
			for (unsigned i = 0; i < vsize; i++) {
				//get all edges
				vector<unsigned> adj = oG.GetVertexAdjacentList(i);
				for (unsigned j = 0; j < adj.size(); j++) {
					unsigned orig_src = i;
					unsigned orig_dest = adj[j];
					unsigned reverse_src = orig_dest + vsize;
					unsigned reverse_dest = orig_src + vsize;
					unsigned edge_index = oG.InsertEdge(reverse_src, reverse_dest);
					oG.SetEdgeSymbolicAttributeList(edge_index, oG.GetEdgeSymbolicAttributeList(orig_src, orig_dest));
					oG.SetEdgeStatusAttributeList(edge_index, oG.GetEdgeStatusAttributeList(orig_src, orig_dest));
				}
			}
		}

	}

	void ComputeBinDataStructure() {
		string ofname = "hash_encoding";
		ofstream of(ofname.c_str());

		cout << "Computing bin data structure..." << endl;
		ProgressBar progress_bar;

		InitBinDataStructure();

		//fill structure
		for (unsigned i = 0; i < mDataset.size(); ++i) {
			vector<unsigned> min_list = ComputeHashSignature(i);
			if (PARAM_OBJ.mOutputHashEncoding) {
				for (unsigned j = 0; j < min_list.size(); j++)
					of << min_list[j] << " ";
				of << endl;
			}
			for (unsigned k = 0; k < PARAM_OBJ.mNumHashFunctions; ++k) {
				if (mBinDataStructure[k].count(min_list[k]) > 0) {
					mBinDataStructure[k][min_list[k]].push_back(i);
				} else {
					vector<unsigned> tmp;
					tmp.push_back(i);
					mBinDataStructure[k].insert(make_pair(min_list[k], tmp));
				}
			}
			//	mBinDataStructure[k].insert(make_pair(min_list[k], i));
			progress_bar.Count();
		}
	}

	void InitBinDataStructure() {
		//init structure
		mBinDataStructure.clear();
		for (unsigned k = 0; k < PARAM_OBJ.mNumHashFunctions; ++k)
			mBinDataStructure.push_back(umap_uint_vec_uint());
	}

	void AddToBinDataStructure(SVector& aX) {
		static unsigned id_counter = 0;
		vector<unsigned> min_list = ComputeHashSignature(aX, id_counter);
		for (unsigned k = 0; k < PARAM_OBJ.mNumHashFunctions; ++k) {
			if (mBinDataStructure[k].count(min_list[k]) > 0) {
				mBinDataStructure[k][min_list[k]].push_back(id_counter);
			} else {
				vector<unsigned> tmp;
				tmp.push_back(id_counter);
				mBinDataStructure[k].insert(make_pair(min_list[k], tmp));
			}
		}
		id_counter++;
		mDataset.push_back(SVector());
	}

	inline vector<unsigned> ComputeHashSignature(unsigned aID) {
		if (mSignatureMap.count(aID) > 0) return mSignatureMap[aID];
		else {
			vector<unsigned> signature = ComputeHashSignature(mDataset[aID], aID);
			mSignatureMap[aID] = signature;
			return signature;
		}
	}

	inline vector<unsigned> ComputeHashSignature(SVector& aX, unsigned aID) {
		unsigned effective_num_hash_functions = PARAM_OBJ.mNumHashFunctions * PARAM_OBJ.mHashFactor;
		const unsigned MAXUNSIGNED = 2 << 30;
		vector<unsigned> signature;
		//prepare a vector containing the k min values
		for (unsigned k = 0; k < effective_num_hash_functions; ++k)
			signature.push_back(MAXUNSIGNED);
		unsigned size = (unsigned) aX.sparse_size();
		//for each element of the sparse vector
		for (unsigned f = 0; f < size; ++f) {
			//extract only the feature id (i.e. ignore the actial value)
			unsigned hash_id = aX.extract_component(f).first;
			if (hash_id == 0) {
				//feature is should not be 0 as the subsequent rehashing can encounter problems
				cout << "In sequence with id: " << mIdMap[aID] << endl; /////
				cout << "Warning: Feature ID = 0. Feature ID  should be strictly > 0" << endl;
				hash_id = 1; //force collision between feature 0 and 1
			}
			for (unsigned k = 0; k < effective_num_hash_functions; ++k) { //for all k hashes
				unsigned new_hash = IntHash(hash_id, MAXUNSIGNED, k); //rehash the feature id with a procedure that is aware of the index k
				if (signature[k] > new_hash) signature[k] = new_hash; //keep the minimum value only
			}
		}
		//compact signature
		vector<unsigned> compact_signature;
		for (unsigned i = 0; i < PARAM_OBJ.mNumHashFunctions; ++i)
			compact_signature.push_back(0);
		for (unsigned i = 0; i < signature.size(); ++i) {
			//add up several signatures to compose the new signature
			compact_signature[i % PARAM_OBJ.mNumHashFunctions] += signature[i];
		}
		return compact_signature;
	}

	inline vector<unsigned> ComputeHashSignatureNatural(SVector& aX) {
		unsigned effective_num_hash_functions = PARAM_OBJ.mNumHashFunctions * PARAM_OBJ.mHashFactor;
		vector<unsigned> signature;
		unsigned size = (unsigned) aX.sparse_size();
		unsigned effective_size = size < effective_num_hash_functions ? size : effective_num_hash_functions;
		for (unsigned f = 0; f < effective_size; ++f) {
			//do not rehash; instead use simply the f-th feature as
			//signature assuming they are indeed randomly distributed
			signature.push_back(aX.extract_component(f).first);
		}

		//compact signature
		vector<unsigned> compact_signature;
		for (unsigned i = 0; i < signature.size(); i = i + PARAM_OBJ.mHashFactor) {
			unsigned new_hash = 0;
			for (unsigned j = 0; j < PARAM_OBJ.mHashFactor; j++)
				new_hash += signature[i + j];
			compact_signature.push_back(new_hash);
		}
		return compact_signature;
	}

	void OutputBinDataStructureStatistics() const {
		VectorClass bin_size_stats, bin_type_stats;

		for (unsigned k = 0; k < mBinDataStructure.size(); ++k) {
			unsigned bin_type_counter = 0;
			for (umap_uint_vec_uint::const_iterator it = mBinDataStructure[k].begin(); it != mBinDataStructure[k].end(); ++it) {
				//unsigned key = it->first;
				vector<unsigned> dat = it->second;
				unsigned bin_size = dat.size();
				//unsigned  bin_size = mBinDataStructure[k][key].size();
				bin_size_stats.PushBack(bin_size);
				bin_type_counter++;
			}
			bin_type_stats.PushBack(bin_type_counter);
		}

		cout << "Num bins statistics: ";
		bin_type_stats.OutputStatistics(cout);
		cout << endl;
		cout << "Size bins statistics: ";
		bin_size_stats.OutputStatistics(cout);
		cout << endl;
	}

	vector<unsigned> ComputeApproximateNeighborhood(unsigned aID) {
		if (mApproximateNeighborhoodMap.count(aID) == 0) {
			vector<unsigned> hash_signature = ComputeHashSignature(aID);
			vector<unsigned> neighborhood = ComputeApproximateNeighborhood(hash_signature);
			//select neighborhood under true similarity function on the subset of indiced returned by ComputeApproximateNeighborhood
			vector<unsigned> true_neighborhood = ComputeTrueSubNeighborhood(aID, neighborhood);
			mApproximateNeighborhoodMap[aID] = true_neighborhood;
		}
		return mApproximateNeighborhoodMap[aID];
	}

	vector<unsigned> ComputeApproximateNeighborhood(const vector<unsigned>& aInstanceSignature) {
		umap_uint_int neighborhood;
		vector<pair<unsigned, double> > vec;
		for (unsigned k = 0; k < PARAM_OBJ.mNumHashFunctions; ++k) {
			unsigned hash_id = aInstanceSignature[k];
			unsigned collision_size = mBinDataStructure[k][hash_id].size();

			if (collision_size < PARAM_OBJ.mMaxSizeBin * mDataset.size()) {
				//fill neighborhood set counting number of occurrences
				for (vector<unsigned>::iterator it = mBinDataStructure[k][hash_id].begin(); it != mBinDataStructure[k][hash_id].end(); ++it) {
					unsigned instance_id = *it;
					if (neighborhood.count(instance_id) > 0) neighborhood[instance_id]++;
					else neighborhood[instance_id] = 1;
				}
			} else {
				mBinDataStructure[k].erase(hash_id);
			}
		}
		return TrimNeighborhood(neighborhood);
	}

	vector<unsigned> ComputeTrueSubNeighborhood(unsigned aID, vector<unsigned>& aApproximateNeighborhoodList) {
		vector<unsigned> neighbor;
		if (PARAM_OBJ.mTrueSort) {
			vector<pair<double, unsigned> > rank_list;
			for (unsigned i = 0; i < aApproximateNeighborhoodList.size(); ++i) {
				unsigned id_neighbour = aApproximateNeighborhoodList[i];
				double k = Kernel(aID, id_neighbour);
				rank_list.push_back(make_pair(-k, id_neighbour));
			}
			unsigned effective_size = min((unsigned) rank_list.size(), PARAM_OBJ.mNumNearestNeighbors);
			sort(rank_list.begin(), rank_list.end());

			for (unsigned j = 0; j < effective_size; j++) {
				neighbor.push_back(rank_list[j].second);
			}
		} else {
			unsigned effective_size = min((unsigned) aApproximateNeighborhoodList.size(), PARAM_OBJ.mNumNearestNeighbors);
			for (unsigned j = 0; j < effective_size; j++)
				neighbor.push_back(aApproximateNeighborhoodList[j]);
		}
		return neighbor;
	}

	vector<unsigned> ComputeTrueNeighborhood(unsigned aID) {
		const SVector& x = mDataset[aID];
		return ComputeTrueNeighborhood(x);
	}

	vector<unsigned> ComputeTrueNeighborhood(const SVector& aX) {
		vector<pair<double, unsigned> > rank_list;
		for (unsigned i = 0; i < mDataset.size(); ++i) {
			double k = dot(aX, mDataset[i]);
			rank_list.push_back(make_pair(-k, i));
		}
		unsigned effective_size = min((unsigned) rank_list.size(), PARAM_OBJ.mNumNearestNeighbors);
		partial_sort(rank_list.begin(), rank_list.begin() + effective_size, rank_list.end());
		vector<unsigned> neighbor;
		for (unsigned j = 0; j < effective_size; j++)
			neighbor.push_back(rank_list[j].second);
		return neighbor;
	}

	vector<unsigned> TrimNeighborhood(umap_uint_int& aNeighborhood) {
		const int MIN_BINS_IN_COMMON = 2; //Minimum number of bins that two instances have to have in common in order to be considered similar
		//given a list of neighbours with an associated occurences count, return only a fraction of the highest count ones
		vector<unsigned> neighborhood_list;
		if (PARAM_OBJ.mEccessNeighbourSizeFactor > 0) {
			//sort by num occurences
			vector<pair<int, unsigned> > count_list;
			for (umap_uint_int::const_iterator it = aNeighborhood.begin(); it != aNeighborhood.end(); ++it) {
				unsigned id = it->first;
				int count = it->second;
				if (count >= MIN_BINS_IN_COMMON) //NOTE: consider instances that have at least MIN_BINS_IN_COMMON
					count_list.push_back(make_pair(-count, id)); //NOTE:-count to sort from highest to lowest
			}
			sort(count_list.begin(), count_list.end());
			unsigned effective_size = min((unsigned) count_list.size(), (unsigned) (PARAM_OBJ.mEccessNeighbourSizeFactor * PARAM_OBJ.mNumNearestNeighbors));
			for (unsigned i = 0; i < effective_size; ++i)
				neighborhood_list.push_back(count_list[i].second);
		} else { //if mEccessNeighbourSizeFactor==0 then just consider all the ids in the approximate neighborhood
			for (umap_uint_int::const_iterator it = aNeighborhood.begin(); it != aNeighborhood.end(); ++it) {
				neighborhood_list.push_back(it->first);
			}
		}
		return neighborhood_list;
	}

	double ComputeApproximateDensity(unsigned aID) {
		double density = 0;
		unsigned i = aID;
		vector<unsigned> approximate_neighborhood = ComputeApproximateNeighborhood(i);
		if (mApproximateDensityMap[i] == -1) {
			if (PARAM_OBJ.mFullDensityEstimation == true) {
				for (unsigned it = 0; it < approximate_neighborhood.size(); it++) {
					i = approximate_neighborhood[it];
					density += CoreComputeDensity(i, approximate_neighborhood);
				}
				density = density / (approximate_neighborhood.size());
			} else {
				density = CoreComputeDensity(i, approximate_neighborhood);
			}
			mApproximateDensityMap[i] = density;
		} else {
			density = mApproximateDensityMap[i];
		}
		return density;
	}

	double CoreComputeDensity(unsigned aID, vector<unsigned>& aApproximateNeighborhood) {
		double density = 0;
		//compute kernel pairs between i and all elements in aApproximateNeighborhood
		for (unsigned j = 0; j < aApproximateNeighborhood.size(); j++) {
			unsigned u = aID;
			unsigned v = aApproximateNeighborhood[j];
			if (u != v) {
				double k_uv = Kernel(u, v);
				if (PARAM_OBJ.mSharedNeighbourhood) //if we use the shared neighborhood weighting than we multiply the similarity by a corrective factor given by the fraction of shared neighbours between the two instances
					k_uv *= ComputeSharedNeighborhoodSimilarity(u, v);
				density += k_uv;
			}
		}
		density = density / (aApproximateNeighborhood.size() - 1);
		return density;
	}

	double ComputeTrueDensity(unsigned aID) {
		double density = 0;
		if (mTrueDensityMap[aID] == -1) {
			vector<pair<double, unsigned> > sim_list;
			for (unsigned j = 0; j < mDataset.size(); j++) {
				if (aID != j) {
					double k_ij = Kernel(aID, j);
					density += k_ij;
				}
			}
			density = density / (mDataset.size() - 1);
			mTrueDensityMap[aID] = density;
		} else density = mTrueDensityMap[aID];
		return density;
	}

	double ComputeAverageDensity(set<unsigned>& aSet) {
		double density = 0;
		for (set<unsigned>::iterator it = aSet.begin(); it != aSet.end(); ++it) {
			unsigned id = *it;
			density += ComputeApproximateDensity(id);
		}
		return density;
	}
	vector<unsigned> ComputeMinimallyOverlappingHighDensityCenterList(unsigned aSampleSize, double aFractionCenterScan, unsigned aMaxIntersectionSize) {
		//compute density estimate for random fraction of instances in dataset
		unsigned data_size = mGreyList.size() > 0 ? mGreyList.size() : mDataset.size();
		unsigned effective_size = floor(data_size * aFractionCenterScan);
		cout << "Computing approximate density information for random sample of " << effective_size << " instances [" << aFractionCenterScan * 100 << "% of total size " << data_size << "]." << endl; ////

		//random selection of instances
		vector<unsigned> index_list;

		//select the candidate centers from gray list or from all ids
		if (mGreyList.size() > 0) { //if gray list is available then use ids from there
			for (unsigned i = 0; i < data_size; ++i)
				index_list.push_back(mGreyList[i] - 1); //NOTE -1 to adjust for the base 1
		} else { //else use all ids in dataset
			for (unsigned i = 0; i < data_size; ++i)
				index_list.push_back(i);
		}

		vector<unsigned> selected_index_list;
		//select either all the available centers
		if (aFractionCenterScan == 1) {
			selected_index_list.insert(selected_index_list.begin(), index_list.begin(), index_list.end());
		} else {
			//or select a random subset of candidate centers of size effective_size
			for (unsigned i = 0; i < data_size; ++i) {
				unsigned j = randomUnsigned(data_size);
				swap(index_list[i], index_list[j]);
			}
			for (unsigned i = 0; i < effective_size; ++i)
				selected_index_list.push_back(index_list[i]);
		}

		//compute density estimate
		vector<pair<double, unsigned> > density_list;
		{
			ProgressBar progress_bar;
			for (unsigned j = 0; j < selected_index_list.size(); ++j) {
				unsigned i = selected_index_list[j];
				double density = ComputeApproximateDensity(i);
				density_list.push_back(make_pair(-density, i));
				progress_bar.Count();

			}
		}

		//select non overlapping centers in decreasing order of density
		sort(density_list.begin(), density_list.end());
		vector<unsigned> result;
		set<unsigned> active_neighborhood;
		{
			ProgressBar progress_bar;
			cout << "Computing minimally overlapping high density center list for up to " << aSampleSize << " centers." << endl; ////
			for (unsigned i = 0; i < density_list.size() && result.size() < aSampleSize; i++) {
				unsigned id = density_list[i].second;
				vector<unsigned> neighborhood = ComputeApproximateNeighborhood(id);
				set<unsigned> neighborhood_set;
				neighborhood_set.insert(neighborhood.begin(), neighborhood.end());
				set<unsigned> intersection;
				set_intersection(active_neighborhood.begin(), active_neighborhood.end(), neighborhood_set.begin(), neighborhood_set.end(), inserter(intersection, intersection.begin()));
				if (i == 0 || intersection.size() <= aMaxIntersectionSize) { //if the intersection between the neighborhood of the current center and the union of all active neighborhoods is less than a defined constant (eg. 0) then accept the new center in the active set
					active_neighborhood.insert(neighborhood.begin(), neighborhood.end());
					result.push_back(id);
					progress_bar.Count();
				}
			}
		}
		//return result;

		//iterate the following steps:
		//swap one center
		//if it improves the overall quality measure keep it otherwise do not perform the update
		vector<unsigned> working_set(result);
		if (PARAM_OBJ.mMaxRefinement > 0 && PARAM_OBJ.mMaxIntersectionSize > 0) {
			cout << "Attempt to improve over initial result (max num iterations " << PARAM_OBJ.mMaxRefinement << ")" << endl;
			unsigned counter = 0;
			for (unsigned j = 0; j < PARAM_OBJ.mMaxRefinement; j++) {
				vector<unsigned> current_set(working_set);
				double original_quality = CenterSetQuality(current_set);
				unsigned rand_index_dest = randomUnsigned(selected_index_list.size());
				unsigned dest_id = selected_index_list[rand_index_dest];
				unsigned rand_index_src = randomUnsigned(current_set.size());
				unsigned src_id = current_set[rand_index_src];
				current_set[rand_index_src] = dest_id;
				double current_quality = CenterSetQuality(current_set);
				if (current_quality > original_quality) {
					working_set = current_set;
					counter++;
					cout << "Replaced center with id=" << src_id << " with id=" << dest_id << endl;
				}
			}
			if (counter > 0) {
				cout << "Successfully executed " << counter << " replacements" << endl;
			}
		}
		return working_set;
	}

	double CenterSetQuality(vector<unsigned> aSet) {
		//compute sum of approximate densities
		double density = 0;
		for (unsigned i = 0; i < aSet.size(); ++i) {
			density += ComputeApproximateDensity(aSet[i]);
		}
		//compute scaling factor as the ration of the size of the union of the neighb over the sum of the sizes of the neigh

		unsigned size_sum = 0;
		set<unsigned> union_set;
		for (unsigned i = 0; i < aSet.size(); ++i) {
			vector<unsigned> neighborhood = ComputeApproximateNeighborhood(aSet[i]);
			union_set.insert(neighborhood.begin(), neighborhood.end());
			size_sum += neighborhood.size();
		}
		double scaling_factor = (double) union_set.size() / (double) size_sum;
		double set_quality = density * scaling_factor;
		return set_quality;
	}

	double ComputeAverageSimilarityToSet(unsigned aID, set<unsigned>& aSet) {
		double avg_sim = 0;
		for (set<unsigned>::iterator it = aSet.begin(); it != aSet.end(); ++it) {
			unsigned id = (*it);
			avg_sim += Kernel(aID, id);
		}
		return avg_sim / aSet.size();
	}

	double ComputeAverageSimilarity(set<unsigned>& aSet) {
		double avg_sim = 0;
		for (set<unsigned>::iterator it = aSet.begin(); it != aSet.end(); ++it) {
			unsigned id = (*it);
			avg_sim += ComputeAverageSimilarityToSet(id, aSet);
		}
		return avg_sim / aSet.size();
	}

	vector<unsigned> ComputeNeighborhoodRanking(unsigned aID) {
		vector<pair<double, unsigned> > sim_list;
		for (unsigned i = 0; i < mDataset.size(); ++i) {
			if (i != aID) {
				double k = Kernel(aID, i);
				sim_list.push_back(make_pair(-k, i)); //note: use -k to sort in decreasing order
			}
		}
		//sort and take most similar <effective_size>
		sort(sim_list.begin(), sim_list.end());
		vector<unsigned> neighborhood;
		for (unsigned t = 0; t < sim_list.size(); ++t)
			neighborhood.push_back(sim_list[t].second);
		return neighborhood;
	}

	void OutputApproximateCluster() {
//TODO finish the approximate cluster
		//output cluster but replace all calls to true_similarity with shared neighb similarity over approximate neighb
	}

	void OutputCluster(ostream& out) {
		//initialize density cache
		mApproximateDensityMap.clear();
		mTrueDensityMap.clear();
		for (unsigned i = 0; i < mDataset.size(); ++i) {
			mApproximateDensityMap.push_back(-1);
			mTrueDensityMap.push_back(-1);
		}

		vector<unsigned> density_center_list;
		density_center_list = ComputeMinimallyOverlappingHighDensityCenterList(PARAM_OBJ.mSampleSize, PARAM_OBJ.mFractionCenterScan, PARAM_OBJ.mMaxIntersectionSize);
		cout << "Compute (approximate) neighborhood for selected " << density_center_list.size() << " cluster centers." << endl; ////
		{
			ProgressBar progress_bar;
			for (unsigned i = 0; i < density_center_list.size(); ++i) {
				unsigned id = density_center_list[i];
				vector<unsigned> neighborhood = ComputeTrueNeighborhood(id);
				progress_bar.Count();
				for (unsigned i = 0; i < neighborhood.size(); i++) {
					unsigned relative_id = neighborhood[i];
					unsigned absolute_id = mIdMap[relative_id];
					out << absolute_id << " ";
				}
				out << endl;
			}
		}
		if (PARAM_OBJ.mVerbose) OutputClusterVerbose(out, density_center_list);
	}

	void OutputClusterVerbose(ostream& out, vector<unsigned> aDensityCenterList) {
		vector<double> density_list;
		{
			ProgressBar progress_bar;
			cout << "Computing true density for approximated center list of " << aDensityCenterList.size() << " centers" << endl;
			for (unsigned i = 0; i < aDensityCenterList.size(); ++i) {
				unsigned id = aDensityCenterList[i];
				density_list.push_back(ComputeTrueDensity(id));
				progress_bar.Count();
			}
		}
		{
			VectorClass density_stats(density_list);
			cout << endl << "Centers density statistics: ";
			density_stats.OutputStatistics(cout);
			cout << endl;
		}
		{
			vector<double> true_density_list;
			{
				ProgressBar progress_bar;
				cout << "Computing true density for all instances " << mDataset.size() << endl;
				for (unsigned i = 0; i < mDataset.size(); i++) {
					true_density_list.push_back(ComputeTrueDensity(i));
					progress_bar.Count();
				}
			}
			VectorClass density_stats(true_density_list);
			cout << endl << "Global density statistics: ";
			density_stats.OutputStatistics(cout);
			cout << endl;
		}
	}

	void OutputAccuracy(ostream& out) {
		cout << "Compute neighbourhood accuracy" << endl; ////
		ProgressBar progress_bar;
		double cum = 0;
		unsigned effective_neighbourhood_size = min(PARAM_OBJ.mNumNearestNeighbors, (unsigned) mDataset.size());
		for (unsigned u = 0; u < mDataset.size(); ++u) {
			progress_bar.Count();
			vector<unsigned> approximate_neighborhood = ComputeApproximateNeighborhood(u);
			set<unsigned> approximate_neighborhood_set;
			approximate_neighborhood_set.insert(approximate_neighborhood.begin(), approximate_neighborhood.end());
			vector<unsigned> true_neighborhood = ComputeTrueNeighborhood(u);
			set<unsigned> true_neighborhood_set;
			true_neighborhood_set.insert(true_neighborhood.begin(), true_neighborhood.end());
			set<unsigned> intersection;
			set_intersection(approximate_neighborhood_set.begin(), approximate_neighborhood_set.end(), true_neighborhood_set.begin(), true_neighborhood_set.end(), inserter(intersection, intersection.begin()));
			double val = (double) intersection.size() / effective_neighbourhood_size;
			out << val << endl;
			cum += val;
		}
		cout << endl << "Accuracy: " << cum / mDataset.size() << endl;
	}

	void OutputApproximateKNN(ostream& out) {
		vector<int> id_list;
		if (mGreyList.size() > 0) {
			for (unsigned i = 0; i < mGreyList.size(); ++i)
				id_list.push_back(mGreyList[i] - 1);
		} else {
			for (unsigned i = 0; i < mDataset.size(); ++i)
				id_list.push_back(i);
		}
		cout << "Compute approximate nearest neighbours for " << id_list.size() << " elements." << endl; ////
		ProgressBar progress_bar;
		for (unsigned u = 0; u < id_list.size(); ++u) {
			vector<unsigned> approximate_neighborhood = ComputeApproximateNeighborhood(id_list[u]);
			for (unsigned t = 0; t < approximate_neighborhood.size(); ++t) {
				out << approximate_neighborhood[t] + 1 << " "; //NOTE: numbering starts from 1
			}
			out << endl;
			progress_bar.Count();
		}
	}

	void OutputTrueKNN(ostream& out) {
		vector<int> id_list;
		if (mGreyList.size() > 0) {
			for (unsigned i = 0; i < mGreyList.size(); ++i)
				id_list.push_back(mGreyList[i] - 1);
		} else {
			for (unsigned i = 0; i < mDataset.size(); ++i)
				id_list.push_back(i);
		}
		unsigned effective_neighbourhood_size = min(PARAM_OBJ.mNumNearestNeighbors, (unsigned) mDataset.size());
		cout << "Compute true " << effective_neighbourhood_size << "-nearest neighbours for " << id_list.size() << " elements." << endl; ////
		ProgressBar progress_bar;
		for (unsigned i = 0; i < id_list.size(); ++i) {
			unsigned u = id_list[i];
			vector<pair<double, unsigned> > sim_list;
			//compute kernel pairs between aID and all elements
			for (unsigned v = 0; v < mDataset.size(); v++) {
				double k_uv = Kernel(u, v);
				sim_list.push_back(make_pair(-k_uv, v)); //note: use -k to sort in decreasing order
			}
			//sort and take truly most similar
			sort(sim_list.begin(), sim_list.end());
			for (unsigned k = 0; k < effective_neighbourhood_size; ++k) {
				out << sim_list[k].second + 1 << " "; //NOTE: numbering starts from 1
			}
			out << endl;
			progress_bar.Count();
		}
	}

	void OutputApproximateKNNPrediction(ostream& out, string& aSparseASCIITestInputFileName, string& aTrainTargetInputFileName) {
		cout << "Compute approximate nearest neighbour prediction of test instances in " << aSparseASCIITestInputFileName << "." << endl; ////
		ProgressBar progress_bar;

		//read test instances
		vector<SVector> test_dataset;
		InputSparse(aSparseASCIITestInputFileName, "ascii", test_dataset);

		//read train targets
		vector<string> train_target_list;
		InputStringList(aTrainTargetInputFileName, train_target_list);

		cout << "Computing k-NN predictions." << endl;
		//for each test instance
		for (unsigned u = 0; u < test_dataset.size(); ++u) {
			//extract signature
			vector<unsigned> hash_signature = ComputeHashSignature(test_dataset[u], u);
			//extract knn
			vector<unsigned> approximate_neighborhood = ComputeApproximateNeighborhood(hash_signature);
			string prediction = KNNPredict(approximate_neighborhood, train_target_list);
			out << prediction << endl;
			progress_bar.Count();
		}
	}

	void OutputTrueKNNPrediction(ostream& out, string& aSparseASCIITestInputFileName, string& aTrainTargetInputFileName) {
		cout << "Compute true nearest neighbour prediction of test instances." << endl; ////
		ProgressBar progress_bar;

		//read test instances
		vector<SVector> test_dataset;
		InputSparse(aSparseASCIITestInputFileName, "ascii", test_dataset);

		//read train targets
		vector<string> train_target_list;
		InputStringList(aTrainTargetInputFileName, train_target_list);

		cout << "Computing k-NN predictions on " << test_dataset.size() << " instances." << endl;
		//for each test instance
		for (unsigned u = 0; u < test_dataset.size(); ++u) {
			//extract knn
			vector<unsigned> neighborhood = ComputeTrueNeighborhood(test_dataset[u]);
			//compute majority class
			string prediction = KNNPredict(neighborhood, train_target_list);
			out << prediction << endl;
			progress_bar.Count();
		}
	}

	string KNNPredict(const vector<unsigned>& aNeighborhood, const vector<string>& aTargetList) const {
		//compute histogram of targets in neighborhood
		map<string, unsigned> histogram;
		for (unsigned i = 0; i < aNeighborhood.size(); ++i) {
			unsigned nn_id = aNeighborhood[i];
			assert(nn_id<aTargetList.size());
			string predicted_target = aTargetList[nn_id];
			if (histogram.count(predicted_target) == 0) histogram[predicted_target] = 1;
			else histogram[predicted_target]++;
		}
		//compute majority vote for target
		string max_target = aTargetList[0]; //initialization with one arbitrary target
		unsigned max_val = 0;
		for (map<string, unsigned>::const_iterator it = histogram.begin(); it != histogram.end(); ++it) {
			string target = it->first;
			unsigned vote = it->second;
			if (max_val < vote) {
				max_val = vote;
				max_target = target;
			}
		}
		return max_target;
	}

	void OutputKernel(ostream& out) {
		cout << "Compute kernel matrix." << endl; ////
		ProgressBar progress_bar;
		for (unsigned i = 0; i < mDataset.size(); i++) {
			for (unsigned j = 0; j < mDataset.size(); j++)
				out << Kernel(i, j) << " ";
			out << endl;
			progress_bar.Count();
		}
	}

	void Output(ostream& out) {
		for (unsigned i = 0; i < mDataset.size(); i++)
			out << mDataset[i];
	}

	void OutputFeatureMap(string aFileName) const {
		string ofname = aFileName + ".feature_map";
		ofstream of(ofname.c_str());
		pmFeatureGenerator->OutputFeatureMap(of);
	}

	double Kernel(unsigned aI, unsigned aJ) {
		unsigned i = min(aI, aJ);
		unsigned j = max(aI, aJ);
		if (PARAM_OBJ.mCaching) {
			pair<unsigned, unsigned> key = make_pair(i, j);
			if (mKernelMap.count(key) == 0) {
				double value = Similarity(i, j);
				mKernelMap[key] = value;
			}
			return mKernelMap[key];
		} else return Similarity(i, j);
	}

	double Similarity(unsigned aI, unsigned aJ) {
		return dot(mDataset[aI], mDataset[aJ]);
	}
	/**
	 Computes the fraction of neighbors that are common between instance I and J
	 */
	double ComputeSharedNeighborhoodSimilarity(unsigned aI, unsigned aJ) {
		//TODO: cache this result
		vector<unsigned> neighborhood_i = ComputeApproximateNeighborhood(aI);
		vector<unsigned> neighborhood_j = ComputeApproximateNeighborhood(aJ);
		set<unsigned> neighborhood_i_set;
		neighborhood_i_set.insert(neighborhood_i.begin(), neighborhood_i.end());
		set<unsigned> neighborhood_j_set;
		neighborhood_j_set.insert(neighborhood_j.begin(), neighborhood_j.end());
		set<unsigned> intersection;
		set_intersection(neighborhood_i_set.begin(), neighborhood_i_set.end(), neighborhood_j_set.begin(), neighborhood_j_set.end(), inserter(intersection, intersection.begin()));
		double shared_neighbourhood_value = (double) intersection.size() / sqrt((double) neighborhood_i_set.size() * (double) neighborhood_j_set.size());
		return shared_neighbourhood_value;
	}
}
;

//---------------------------------------------------------------------------------
int main(int argc, char** argv) {
	TimerClass T;
	LOGF << "--------------------------------------------------------------------------------" << endl;
	LOGF << CREDITS << " \nLast build:" << DATE << endl;
	cout << CREDITS << " \nLast build:" << DATE << endl;
	time_t rawtime_start;
	time(&rawtime_start);
	LOGF << "Start logging: " << asctime(localtime(&rawtime_start)) << endl;
	LOGF << "Command line: ";
	for (int i = 0; i < argc; i++)
		LOGF << stream_cast<string>(argv[i]) << " ";
	LOGF << endl;
	try {
		PARAM_OBJ.Init(argc, argv);
		srand(PARAM_OBJ.mRandSeed);
		string mode = "";
		//factory
		NSPDK_FeatureGenerator fg("nspdk");

		NSPDK_FeatureGenerator* pfg;
		if (PARAM_OBJ.mType == "nspdk") pfg = &fg;
		else throw range_error("Unknown feature generator type:" + PARAM_OBJ.mType);

		if (PARAM_OBJ.mOutputFeatureMap) PARAM_OBJ.mDebug += 1; //if the output of the feature map is required then the Debug level has to be at least 1

		pfg->set_flag("radius", stream_cast<string>(PARAM_OBJ.mRadiusMax));
		pfg->set_flag("distance", stream_cast<string>(PARAM_OBJ.mDistanceMax));
		pfg->set_flag("match_type", stream_cast<string>(PARAM_OBJ.mMatchingType));
		pfg->set_flag("hash_bit_size", stream_cast<string>(PARAM_OBJ.mFeatureBitSize));
		pfg->set_flag("hash_bit_mask", stream_cast<string>((2 << PARAM_OBJ.mFeatureBitSize) - 1));
		pfg->set_flag("verbosity", stream_cast<string>(PARAM_OBJ.mDebug));
		if (PARAM_OBJ.mMinKernel) pfg->set_flag("min_kernel", "true");
		if (!PARAM_OBJ.mNormalization) pfg->set_flag("normalization", "false");
		pfg->OutputParameters(cout); ////////////////////////////////////////////////////////////////

		string ofname;
		//main process
		NSPDKClass C(pfg);

		if (PARAM_OBJ.mOutputApproximateCluster) C.InitBinDataStructure();

		//read data
		C.Input();

		if (PARAM_OBJ.mOutputFeatures) {
			if (PARAM_OBJ.mOutputFeatureMap) C.OutputFeatureMap(PARAM_OBJ.mGspanInputFileName);
		}

		if (PARAM_OBJ.mOutputApproximateCluster) {
			C.OutputApproximateCluster();
		}

		if (PARAM_OBJ.mOutputCluster) {
			C.ComputeBinDataStructure();
			if (PARAM_OBJ.mVerbose) C.OutputBinDataStructureStatistics();
			ofname = PARAM_OBJ.mGspanInputFileName + PARAM_OBJ.mSparseASCIIInputFileName + PARAM_OBJ.mSparseBinaryInputFileName + ".fast_cluster";
			ofstream ofs_fc(ofname.c_str());
			C.OutputCluster(ofs_fc);
		}

		if (PARAM_OBJ.mOutputAccuracy) {
			C.ComputeBinDataStructure();
			ofname = PARAM_OBJ.mGspanInputFileName + PARAM_OBJ.mSparseASCIIInputFileName + PARAM_OBJ.mSparseBinaryInputFileName + ".nn_accuracy";
			ofstream ofs_fc(ofname.c_str());
			C.OutputAccuracy(ofs_fc);
		}

		if (PARAM_OBJ.mOutputApproximateKNN) {
			C.ComputeBinDataStructure();
			ofname = PARAM_OBJ.mGspanInputFileName + PARAM_OBJ.mSparseASCIIInputFileName + PARAM_OBJ.mSparseBinaryInputFileName + ".approx_knn";
			ofstream ofs_aknn(ofname.c_str());
			C.OutputApproximateKNN(ofs_aknn);
			cout << endl << "Results written in file <" << ofname << ">" << endl;
		}

		if (PARAM_OBJ.mOutputTrueKNN) {
			ofname = PARAM_OBJ.mGspanInputFileName + PARAM_OBJ.mSparseASCIIInputFileName + PARAM_OBJ.mSparseBinaryInputFileName + ".knn";
			ofstream ofs_fknn(ofname.c_str());
			C.OutputTrueKNN(ofs_fknn);
		}

		if (PARAM_OBJ.mOutputKernel) {
			ofname = PARAM_OBJ.mGspanInputFileName + PARAM_OBJ.mSparseASCIIInputFileName + PARAM_OBJ.mSparseBinaryInputFileName + ".kernel";
			ofstream ofs_fk(ofname.c_str());
			C.OutputKernel(ofs_fk);
		}

		if (PARAM_OBJ.mOutputApproximateKNNPrediction) {
			C.ComputeBinDataStructure();
			ofname = PARAM_OBJ.mGspanInputFileName + PARAM_OBJ.mSparseASCIIInputFileName + PARAM_OBJ.mSparseBinaryInputFileName + ".approx_knn_prediction";
			ofstream ofs_knnp(ofname.c_str());
			C.OutputApproximateKNNPrediction(ofs_knnp, PARAM_OBJ.mSparseASCIITestInputFileName, PARAM_OBJ.mTrainTargetInputFileName);
		}

		if (PARAM_OBJ.mOutputTrueKNNPrediction) {
			ofname = PARAM_OBJ.mGspanInputFileName + PARAM_OBJ.mSparseASCIIInputFileName + PARAM_OBJ.mSparseBinaryInputFileName + ".knn_prediction";
			ofstream ofs_knnp(ofname.c_str());
			C.OutputTrueKNNPrediction(ofs_knnp, PARAM_OBJ.mSparseASCIITestInputFileName, PARAM_OBJ.mTrainTargetInputFileName);
		}

	} catch (exception& e) {
		cerr << e.what();
		LOGF << e.what() << endl;
	}
	time_t rawtime_end;
	time(&rawtime_end);
	LOGF << "End logging: " << asctime(localtime(&rawtime_end)) << endl;
	return 0;
}