NSPDK_FeatureGenerator.cc 34.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
#include "NSPDK_FeatureGenerator.h"

//----------------------------------------------------------------------------------------------------------------------------
void DebugClass::Clear() {
	mHashToFeatureMap.clear();
	mHashToGraphMap.clear();
}

void DebugClass::Output(ostream& out) const {
	OutputFeatureEncoding(out);
}

void DebugClass::OutputFeatureEncoding(ostream& out) const {
	out << "#Feature encodings: [" << mHashToFeatureMap.size() << "]" << endl;
	for (map<unsigned, string>::const_iterator it = mHashToFeatureMap.begin(); it != mHashToFeatureMap.end(); ++it)
		out << it->first << " -> " << it->second << endl;
}

void DebugClass::StoreFeatureCodeToFeatureInfo(unsigned aFeatureCode, vector<unsigned>& aDetailsList) {
	if (mHashToFeatureMap.count(aFeatureCode) == 0) {
		string feature_information = "r:" + stream_cast<string>(aDetailsList[0]) + " d:" + stream_cast<string>(aDetailsList[1]);
		feature_information += " [g: " + mHashToGraphMap[aDetailsList[2]] + "]";
		feature_information += " [g: " + mHashToGraphMap[aDetailsList[3]] + "]";
		mHashToFeatureMap.insert(make_pair(aFeatureCode, feature_information));
	}
}

void DebugClass::SerializedRootedGraphCanonicalFormEncoding(unsigned aDiscreteEncoding, int aRootVertexIndex, const GraphClass& aG, int aRadius) {
  string value="";  
if (aRadius>0){
	//extract set of vertices in the ball of radius aMaxDepth
	set<unsigned> ball;
	for (int r = 0; r <= aRadius; r++) {
		vector<unsigned> dest_id_list = aG.GetFixedDistanceVertexIDList(aRootVertexIndex, r);
		ball.insert(dest_id_list.begin(), dest_id_list.end());
	}
	if (ball.size()==0) throw std::logic_error("ERROR99: Something went wrong in SerializedRootedGraphCanonicalFormEncoding: cannot generate features over an empty neighbourhood graph!");
	//induce the subgraph from the ball and return the new index for the root vertex
	GraphClass gal;
	unsigned root = aG.GetVertexInducedRootedSubGraph(ball, aRootVertexIndex, gal);
	string root_label = gal.GetVertexLabel(root);
	root_label += "*";
	gal.SetVertexLabel(root, root_label);
	value = gal.Serialize();
  } else value="*"+aG.GetVertexLabelConcatenated(aRootVertexIndex);
 mHashToGraphMap.insert(make_pair(aDiscreteEncoding, value));
}

//----------------------------------------------------------------------------------------------------------------------------------------------
NSPDK_FeatureGenerator::NSPDK_FeatureGenerator(const std::string& id) :
		FeatureGenerator(id), FlagsServiceClient(id) {
	mRadius = 0;
	mDistance = 0;
	mMatchType = "hard";
	mHashBitSize = (unsigned) (numeric_limits<unsigned>::digits - 1);
	mHashBitMask = numeric_limits<unsigned>::max() >> 1;
	mMinKernel = false;
	mNormalization = true;
	mDebugVerbosity = 0;
	mVertexDegreeThreshold = 10;
	new_flag(&mVertexDegreeThreshold, "vertex_degree_threshold", "(unsigned)\nThreshold vertex degree above which features for a specific vertex are not generated");
	new_flag(&mRadius, "radius", "(unsigned)\nMax radius of kernel neighborhoods");
	new_flag(&mDistance, "distance", "(unsigned)\nMax distance between pairs of neighborhoods");
	new_flag(&mMatchType, "match_type", "(string)\nHow to match neighborhoods: soft, hard");
	new_flag(&mNormalization, "normalization", "(bool)\nNormalize feature vectors");
	new_flag(&mMinKernel, "min_kernel", "(bool)\nApply the min-kernel on top of the generated features");
	new_flag(&mHashBitSize, "hash_bit_size", "(unsigned)\nNumber of bits for hash values"); //FIXME: since parameter variables are accessed directly the bit size is useless as setting it cannot trigger automatically the computation of the bit mask; the only solution is to set directly the bit mask itself
	mHashBitMask = (2 << mHashBitSize) - 1;
	new_flag(&mHashBitMask, "hash_bit_mask", "(unsigned)\nMask for hash values");
	new_flag(&mDebugVerbosity, "verbosity", "(unsigned)\nNumber for debug verbosity level");
}

void NSPDK_FeatureGenerator::OutputParameters(ostream& out) const {
	out << "Radius: " << mRadius << endl;
	out << "Distance: " << mDistance << endl;
	out << "Match_Type: " << mMatchType << endl;
	out << "Hash_Bit_Size: " << mHashBitSize << endl;
	out << "Hash_Bit_mask: " << mHashBitMask << endl;
	out << "Min_Kernel: " << mMinKernel << endl;
	out << "Normalization: " << mNormalization << endl;
	out << "Vertex Degree Threshold: " << mVertexDegreeThreshold << endl;
	out << "Debug_Verbosity: " << mDebugVerbosity << endl;
}

void NSPDK_FeatureGenerator::OutputFeatureMap(ostream& out) const {
	mDebugInfo.OutputFeatureEncoding(out);
}

unsigned NSPDK_FeatureGenerator::GenerateGraphHashCode(const GraphClass& aG, const vector<unsigned>& aFirstEndpointList) {
	SVector x;
	generate_feature_vector(aG, x, aFirstEndpointList);
	unsigned code = GenerateVectorHashCode(x);
	return code;
}

void NSPDK_FeatureGenerator::InitFeatureCache(const GraphClass& aG, unsigned aRadius) {
	mFeatureCache.clear();
	unsigned vertex_size = aG.VertexSize();
	for (unsigned i = 0; i <= aRadius; ++i) {
		mFeatureCache.push_back(vector<unsigned>(vertex_size, 0));
	}
}

void NSPDK_FeatureGenerator::generate_feature_vector(const GraphClass& aG, SVector& x, const vector<unsigned>& aFirstEndpointList) {
	vector<unsigned> first_endpoint_list = aFirstEndpointList;
	GetFirstEndpoints(aG, first_endpoint_list);
	if (first_endpoint_list.size() == 0) throw std::logic_error("ERROR9: Something went wrong: cannot generate features over an empty set of first endpoints!");
	aG.ComputePairwiseDistanceInformation(mDistance, mRadius, first_endpoint_list);
	if (aG.Check() == false) throw logic_error("ERROR10: the graph data structure is not sound and it has not passed the checkup procedure"); //check graph data structure soundness

	InitFeatureCache(aG, mRadius);
	for (unsigned r = 0; r <= mRadius; r++) {
		for (unsigned d = 0; d <= mDistance; d++) {
			SVector z;
			for (unsigned i = 0; i < first_endpoint_list.size(); i++) {
				unsigned src_id = first_endpoint_list[i];
				if (aG.GetVertexViewPoint(src_id) && aG.GetVertexKernelPoint(src_id) && aG.GetVertexAlive(src_id)) { //proceed to extract features only if the *src* vertex is a kernel point and is alive
					SVector zv;
					GenerateVertexFeatures(src_id, aG, r, d, zv);
					z.add(zv);
				}
			}
			if (mNormalization) z.normalise();
			x.add(z);
		}
	}

	if (mNormalization) x.normalise();
	if (mMinKernel) ConvertSparseVectorToMinFeatureVector(x);
	if (mDebugVerbosity > 0) {
		cout << x << endl;
		OutputFeatureMap(cout);
		aG.Output(cout);
	}
}

void NSPDK_FeatureGenerator::generate_vertex_feature_vector(const GraphClass& aG, vector<SVector>& x_list, const vector<unsigned>& aFirstEndpointList) {
	vector<unsigned> first_endpoint_list = aFirstEndpointList;
	GetFirstEndpoints(aG, first_endpoint_list);
	if (first_endpoint_list.size() == 0) throw std::logic_error("ERROR6: Something went wrong: cannot generate features over an empty set of first endpoints!");
	aG.ComputePairwiseDistanceInformation(mDistance, mRadius, first_endpoint_list);
	if (aG.Check() == false) throw logic_error("ERROR11: the graph data structure is not sound and it has not passed the checkup procedure"); //check graph data structure soundness

	InitFeatureCache(aG, mRadius);
	for (unsigned i = 0; i < first_endpoint_list.size(); i++) {
		SVector z;
		unsigned src_id = first_endpoint_list[i];
		if (aG.GetVertexViewPoint(src_id) && aG.GetVertexKernelPoint(src_id) && aG.GetVertexAlive(src_id)) { //proceed to extract features only if the *src* vertex is a kernel point and is alive
			for (unsigned r = 0; r <= mRadius; r++) {
				for (unsigned d = 0; d <= mDistance; d++) {
					SVector zv;
					GenerateVertexFeatures(src_id, aG, r, d, zv);
					z.add(zv);
				}
			}
		}
		if (mMinKernel) ConvertSparseVectorToMinFeatureVector(z);
		x_list.push_back(z);
	}
	if (mDebugVerbosity > 0) {
		for (unsigned i = 0; i < x_list.size(); ++i)
			cout << i << " " << x_list[i] << endl;
		OutputFeatureMap(cout);
		aG.Output(cout);
	}
}

unsigned NSPDK_FeatureGenerator::GenerateVectorHashCode(SVector& x) {
	vector<pair<int, double> > vec = x.unpack();
	vector<unsigned> hash_vec;
	for (unsigned i = 0; i < vec.size(); ++i) {
		int key = vec[i].first;
		double val = vec[i].second;
		hash_vec.push_back((unsigned) key);
		hash_vec.push_back((unsigned) (val * 10000)); //Note: in general the vale is a real number that has to be converted into an unsigned
	}
	unsigned code = HashFunc(hash_vec, mHashBitMask);
	return code;
}

unsigned NSPDK_FeatureGenerator::GenerateVertexHashCode(unsigned aSrcID, const GraphClass& aG) {
	SVector x;
	GenerateVertexFeatures(aSrcID, aG, x);
	unsigned code = GenerateVectorHashCode(x);
	return code;
}

void NSPDK_FeatureGenerator::GenerateVertexFeatures(unsigned aSrcID, const GraphClass& aG, SVector& x) {
	for (unsigned r = 0; r <= mRadius; r++) {
		for (unsigned d = 0; d <= mDistance; d++) {
			SVector zv;
			GenerateVertexFeatures(aSrcID, aG, r, d, zv);
			x.add(zv);
		}
	}
}

void NSPDK_FeatureGenerator::GenerateVertexFeatures(unsigned aSrcID, const GraphClass& aG, unsigned aRadius, unsigned aDistance, SVector& x) {
	vector<unsigned> endpoint_list(4);
	endpoint_list[0] = aRadius;
	endpoint_list[1] = aDistance;

	unsigned src_code = GenerateVertexNeighbourhoodHashCode(aSrcID, aG, aRadius);
	vector<unsigned> dest_id_list = aG.GetFixedDistanceVertexIDList(aSrcID, aDistance);
	for (unsigned dest_j = 0; dest_j < dest_id_list.size(); dest_j++) {
		unsigned dest_id = dest_id_list[dest_j];
		unsigned dest_code = 0;
		if (aG.GetVertexKernelPoint(dest_id) && aG.GetVertexAlive(dest_id)) { //proceed to extract features only if the *dest* vertex is a kernel point and is alive
			dest_code = GenerateVertexNeighbourhoodHashCode(dest_id, aG, aRadius);
			//impose canonical order for pair: i.e. A-B and B-A must generate the same feature
			if (src_code < dest_code) {
				endpoint_list[2] = src_code;
				endpoint_list[3] = dest_code;
			} else {
				endpoint_list[2] = dest_code;
				endpoint_list[3] = src_code;
			}
			unsigned code = HashFunc(endpoint_list, mHashBitMask);
			if (mDebugVerbosity > 0) mDebugInfo.StoreFeatureCodeToFeatureInfo(code, endpoint_list);
			SVector z;
			z.set(code, 1);
			x.add(z);
		}
	}
}

unsigned NSPDK_FeatureGenerator::GenerateVertexNeighbourhoodHashCode(unsigned aSrcID, const GraphClass& aG, unsigned aRadius) {
	unsigned src_code = 0;
	if (mFeatureCache[aRadius][aSrcID] == 0) {
		src_code = RootedGraphCanonicalFormEncoding(aSrcID, aG, aRadius);
		mFeatureCache[aRadius][aSrcID] = src_code;
	} else {
		src_code = mFeatureCache[aRadius][aSrcID];
	}
	return src_code;
}

void NSPDK_FeatureGenerator::ConvertSparseVectorToMinFeatureVector(SVector& x) {
	vector<pair<int, double> > vec = x.unpack();
	vector<unsigned> hash_vec(2, 0);
	SVector z;
	for (unsigned i = 0; i < vec.size(); ++i) {
		int key = vec[i].first;
		double val = vec[i].second;
		hash_vec[0] = (unsigned) (key);
		for (unsigned j = 0; j < val; ++j) {
			hash_vec[1] = j;
			unsigned code = HashFunc(hash_vec, mHashBitMask);
			z.set(code, 1); //NOTE: unresolved issues in case of collisions
		}
	}
	x = z;
}

unsigned NSPDK_FeatureGenerator::RootedGraphCanonicalFormEncoding(int aRootVertexIndex, const GraphClass& aG, int aRadius) {
	//NOTE:for efficiency reasons case radius=0 and radius=1 are treated as special cases
	unsigned discrete_encoding = 1;
	unsigned root_degree = aG.VertexAdjacentListSize(aRootVertexIndex);
	if (root_degree > mVertexDegreeThreshold) return discrete_encoding;

	if (aRadius == 0) { //return root label
		discrete_encoding = Radius0RootedGraphCanonicalFormEncoding(aRootVertexIndex, aG);
	} else if (aRadius == 1) { //return the sorted sequence of root's children
		discrete_encoding = Radius1RootedGraphCanonicalFormEncoding(aRootVertexIndex, aG);
	} else { //general case
		discrete_encoding = RadiusKRootedGraphCanonicalFormEncoding(aRootVertexIndex, aG, aRadius);
	}
	if (mDebugVerbosity > 0) mDebugInfo.SerializedRootedGraphCanonicalFormEncoding(discrete_encoding, aRootVertexIndex, aG, aRadius);
	return discrete_encoding;
}

unsigned NSPDK_FeatureGenerator::Radius0RootedGraphCanonicalFormEncoding(int aRootVertexIndex, const GraphClass& aG) {
	string encoding = aG.GetVertexLabelConcatenated(aRootVertexIndex);
	unsigned hash_subgraph_code = HashFunc(encoding);
	return hash_subgraph_code;
}

unsigned NSPDK_FeatureGenerator::Radius1RootedGraphCanonicalFormEncoding(int aRootVertexIndex, const GraphClass& aG) {
	unsigned hash_subgraph_code = 1;
	string encoding;
	encoding = aG.GetVertexLabelConcatenated(aRootVertexIndex) + ":";
	vector<pair<string, unsigned> > vertex_label_id_list;
	vector<unsigned> vertex_adjacency_list = aG.GetVertexAdjacentList(aRootVertexIndex);
	vector<unsigned> edge_adjacency_list = aG.GetEdgeAdjacentList(aRootVertexIndex);
	for (unsigned i = 0; i < vertex_adjacency_list.size(); ++i) {
		unsigned child_vertex_id = vertex_adjacency_list[i];
		unsigned child_edge_id = edge_adjacency_list[i];
		string child_label = aG.GetVertexLabelConcatenated(child_vertex_id) + "-" + aG.GetEdgeLabelConcatenated(child_edge_id);
		vertex_label_id_list.push_back(make_pair(child_label, child_vertex_id));
	}
	sort(vertex_label_id_list.begin(), vertex_label_id_list.end());
	if (vertex_label_id_list.size() > 0) encoding += vertex_label_id_list[0].first;
	for (unsigned i = 1; i < vertex_label_id_list.size(); i++)
		encoding += "." + vertex_label_id_list[i].first;
	hash_subgraph_code = HashFunc(encoding);
	return hash_subgraph_code;
}

unsigned NSPDK_FeatureGenerator::RadiusKRootedGraphCanonicalFormEncoding(int aRootVertexIndex, const GraphClass& aG, int aRadius) {
	unsigned hash_subgraph_code = 1;
	//extract set of vertices in the ball of radius aRadius
	set<unsigned> ball;
	for (int r = 0; r <= aRadius; r++) {
		vector<unsigned> dest_id_list = aG.GetFixedDistanceVertexIDList(aRootVertexIndex, r);
		ball.insert(dest_id_list.begin(), dest_id_list.end());
	}

	//induce the subgraph from the ball and return the new index for the root vertex
	GraphClass gal;
	unsigned root = aG.GetVertexInducedRootedSubGraph(ball, aRootVertexIndex, gal);
	gal.ComputePairwiseDistanceInformation(aRadius * 2);

	hash_subgraph_code = RootedGraphCanonicalFormEncoding(gal, root);
	return hash_subgraph_code;
}

unsigned NSPDK_FeatureGenerator::RootedGraphCanonicalFormEncoding(const GraphClass& aG, unsigned aRootID) {
	//for all vertices extract the vertex's signature: distance from root-sorted distance from all the other vertices + their vertex label
	vector<unsigned> vertex_encoding_list;
	for (unsigned i = 0; i < aG.VertexSize(); ++i) {
		vector<unsigned> vertex_encoding;
		//distance from root
		vertex_encoding.push_back(aG.PairwiseDistance(aRootID, i));
		vector<unsigned> distance_list;
		for (unsigned j = 0; j < aG.VertexSize(); ++j) {
			int dist = aG.PairwiseDistance(i, j);
			string distance_label = stream_cast<string>(dist) + aG.GetVertexLabelConcatenated(j);
			unsigned hash_distance_label = HashFunc(distance_label);
			distance_list.push_back(hash_distance_label);
		}
		sort(distance_list.begin(), distance_list.end());
		vector<unsigned> sorted_vertex_encoding;
		for (unsigned t = 0; t < distance_list.size(); t++)
			sorted_vertex_encoding.push_back(distance_list[t]);
		unsigned hash_encoding = HashFunc(sorted_vertex_encoding);
		vertex_encoding_list.push_back(hash_encoding);
	}
	//extract list of all edge's signatures in the induced graph: v-signature,u-signature,label(uv)
	vector<unsigned> edge_list;
	vector<unsigned> edge_encoding(3);
	for (unsigned u = 0; u < aG.VertexSize(); ++u) {
		//get all edges of vertex u
		vector<unsigned> vertex_adjacency_list = aG.GetVertexAdjacentList(u);
		vector<unsigned> edge_adjacency_list = aG.GetEdgeAdjacentList(u);
		for (unsigned j = 0; j < vertex_adjacency_list.size(); ++j) {
			unsigned v = vertex_adjacency_list[j];

			if (vertex_encoding_list[u] < vertex_encoding_list[v]) {
				edge_encoding[0] = vertex_encoding_list[u];
				edge_encoding[1] = vertex_encoding_list[v];
			} else {
				edge_encoding[0] = vertex_encoding_list[v];
				edge_encoding[1] = vertex_encoding_list[u];
			}
			unsigned e = edge_adjacency_list[j];
			string edge_label = aG.GetEdgeLabelConcatenated(e);
			unsigned hash_edge_label = HashFunc(edge_label);
			edge_encoding[2] = hash_edge_label;
			unsigned hash_edge_encoding = HashFunc(edge_encoding);
			edge_list.push_back(hash_edge_encoding);
		}
	}
	//the graph encoding is the sorted list of edge encodings
	sort(edge_list.begin(), edge_list.end());
	unsigned hash_subgraph_code = HashFunc(edge_list);
	return hash_subgraph_code;
}

void NSPDK_FeatureGenerator::GetFirstEndpoints(const GraphClass& aG, vector<unsigned>& oFirstEndpointList) const {
	//insert additional vertices
	if (oFirstEndpointList.size() == 0) //if oFirstEndpointList is empty then fill it with all vertices that are viewpoints, otherwise do nothing i.e. use the given list
		for (unsigned i = 0; i < aG.VertexSize(); ++i)
			if (aG.GetVertexViewPoint(i) || aG.GetVertexAbstraction(i)) oFirstEndpointList.push_back(i);
	if (mDebugVerbosity > 0) {
		cout << "First endpoint id list [" << oFirstEndpointList.size() << "]:" << endl;
		for (unsigned i = 0; i < oFirstEndpointList.size(); i++)
			cout << oFirstEndpointList[i] << " ";
		cout << endl;
	}
}

inline
unsigned NSPDK_FeatureGenerator::HashFunc(const string& aString, unsigned aBitMask) { //NOTE: extract the least significant bits from the hash
	unsigned int hash = 0xAAAAAAAA;
	for (std::size_t i = 0; i < aString.length(); i++) {
		hash ^= ((i & 1) == 0) ? ((hash << 7) ^ aString[i] * (hash >> 3)) : (~(((hash << 11) + aString[i]) ^ (hash >> 5)));
	}
	return hash & aBitMask;
}

inline
unsigned NSPDK_FeatureGenerator::HashFunc(const vector<unsigned>& aList, unsigned aBitMask) {
	unsigned int hash = 0xAAAAAAAA;
	for (std::size_t i = 0; i < aList.size(); i++) {
		hash ^= ((i & 1) == 0) ? ((hash << 7) ^ aList[i] * (hash >> 3)) : (~(((hash << 11) + aList[i]) ^ (hash >> 5)));
	}
	return hash & aBitMask;
}

//----------------------------------------------------------------------------------------------------------------------------------------------
USPK_FeatureGenerator::USPK_FeatureGenerator(const std::string& id) :
		NSPDK_FeatureGenerator(id) {
}

void USPK_FeatureGenerator::GenerateVertexFeatures(unsigned aSrcID, const GraphClass& aG, unsigned aRadius, unsigned aDistance, SVector& x) {
	vector<unsigned> dest_id_list = aG.GetFixedDistanceVertexIDList(aSrcID, aDistance);
	for (unsigned dest_j = 0; dest_j < dest_id_list.size(); dest_j++) {
		unsigned dest_id = dest_id_list[dest_j];
		{
			//extract graph at aSrc end
			set<unsigned> vertex_list = aG.GetUnionShortestPathsVertexIDList(aSrcID, dest_id, aDistance, aRadius);
			GraphClass gal;
			unsigned root = aG.GetVertexInducedRootedSubGraph(vertex_list, aSrcID, gal);
			gal.ComputePairwiseDistanceInformation(aRadius);
			unsigned code = RootedGraphCanonicalFormEncoding(gal, root);
			SVector z;
			z.set(code, 1);
			x.add(z);
		}
		{
			//extract graph at dest_id end
			set<unsigned> vertex_list = aG.GetUnionShortestPathsVertexIDList(dest_id, aSrcID, aDistance, aRadius);
			GraphClass gal;
			unsigned root = aG.GetVertexInducedRootedSubGraph(vertex_list, dest_id, gal);
			gal.ComputePairwiseDistanceInformation(aRadius);
			unsigned code = RootedGraphCanonicalFormEncoding(gal, root);
			SVector z;
			z.set(code, 1);
			x.add(z);
		}
	}
}

//----------------------------------------------------------------------------------------------------------------------------------------------
WDK_FeatureGenerator::WDK_FeatureGenerator(const std::string& id) :
		NSPDK_FeatureGenerator(id) {
	mLowerVertexDegreeThreshold = 1;
	new_flag(&mLowerVertexDegreeThreshold, "lower_vertex_degree_threshold", "(unsigned)\nThreshold vertex degree below which features for a specific vertex are not generated");
}

void WDK_FeatureGenerator::InitFeatureCache(const GraphClass& aG) {
	mSparseFeatureCache.clear();
	mSparseFeatureFlagCache.clear();
	unsigned vertex_size = aG.VertexSize();
	vector<SVector> init_svector(vertex_size);
	mSparseFeatureCache = init_svector;
	vector<bool> init_bool(vertex_size, false);
	mSparseFeatureFlagCache = init_bool;
}

void WDK_FeatureGenerator::generate_feature_vector(const GraphClass& aG, SVector& x, const vector<unsigned>& aFirstEndpointList) {
	vector<unsigned> first_endpoint_list = aFirstEndpointList;
	GetFirstEndpoints(aG, first_endpoint_list);
	if (first_endpoint_list.size() == 0) throw std::logic_error("ERROR7: Something went wrong: cannot generate features over an empty set of first endpoints!");
	aG.ComputePairwiseDistanceInformation(mDistance, mRadius, first_endpoint_list);
	if (aG.Check() == false) throw logic_error("ERROR12: the graph data structure is not sound and it has not passed the checkup procedure"); //check graph data structure soundness

	InitFeatureCache(aG);
	for (unsigned d = 0; d <= mDistance; d++) {
		SVector z;
		for (unsigned i = 0; i < first_endpoint_list.size(); i++) {
			unsigned src_id = first_endpoint_list[i];
			if (aG.GetVertexViewPoint(src_id) && aG.GetVertexKernelPoint(src_id) && aG.GetVertexAlive(src_id)) { //proceed to extract features only if the *src* vertex is a kernel point and is alive
				SVector zv;
				GenerateVertexFeatures(src_id, aG, mRadius, d, zv);
				z.add(zv);
			}
		}
		if (mNormalization) z.normalise();
		x.add(z);
	}

	if (mNormalization) x.normalise();
	if (mMinKernel) ConvertSparseVectorToMinFeatureVector(x);
}

void WDK_FeatureGenerator::generate_vertex_feature_vector(const GraphClass& aG, vector<SVector>& x_list, const vector<unsigned>& aFirstEndpointList) {
	vector<unsigned> first_endpoint_list = aFirstEndpointList;
	GetFirstEndpoints(aG, first_endpoint_list);
	if (first_endpoint_list.size() == 0) throw std::logic_error("ERROR8: Something went wrong: cannot generate features over an empty set of first endpoints!");
	aG.ComputePairwiseDistanceInformation(mDistance, mRadius, first_endpoint_list);
	if (aG.Check() == false) throw logic_error("ERROR13: the graph data structure is not sound and it has not passed the checkup procedure"); //check graph data structure soundness

	InitFeatureCache(aG);
	for (unsigned i = 0; i < first_endpoint_list.size(); i++) {
		SVector z;
		unsigned src_id = first_endpoint_list[i];
		if (aG.GetVertexViewPoint(src_id) && aG.GetVertexKernelPoint(src_id) && aG.GetVertexAlive(src_id)) { //proceed to extract features only if the *src* vertex is a kernel point and is alive
			for (unsigned d = 0; d <= mDistance; d++) {
				SVector zv;
				GenerateVertexFeatures(src_id, aG, mRadius, d, zv);
				z.add(zv);
			}
		}
		if (mMinKernel) ConvertSparseVectorToMinFeatureVector(z);
		x_list.push_back(z);
	}
}

void WDK_FeatureGenerator::GenerateVertexFeatures(unsigned aSrcID, const GraphClass& aG, unsigned aRadius, unsigned aDistance, SVector& x) {
	vector<unsigned> endpoint_list(4);
	endpoint_list[0] = aRadius;
	endpoint_list[1] = aDistance;

	unsigned src_code = HashFunc(aG.GetVertexLabelConcatenated(aSrcID));
	vector<unsigned> dest_id_list = aG.GetFixedDistanceVertexIDList(aSrcID, aDistance);
	for (unsigned dest_j = 0; dest_j < dest_id_list.size(); dest_j++) {
		unsigned dest_id = dest_id_list[dest_j];
		unsigned dest_code = 0;
		if (aG.GetVertexKernelPoint(dest_id) && aG.GetVertexAlive(dest_id)) { //proceed to extract features only if the *dest* vertex is a kernel point and is alive
			dest_code = HashFunc(aG.GetVertexLabelConcatenated(dest_id));

			//rehash the features in src neighborhood
			endpoint_list[2] = src_code;
			endpoint_list[3] = dest_code;
			unsigned src_code = HashFunc(endpoint_list, mHashBitMask);
			SVector z;
			GenerateVertexFeatures(aSrcID, aG, aRadius, z);
			ReHash(z, src_code);
			x.add(z);

			//rehash the features in dest neighborhood
			endpoint_list[2] = dest_code;
			endpoint_list[3] = src_code;
			unsigned dest_code = HashFunc(endpoint_list, mHashBitMask);
			SVector t;
			GenerateVertexFeatures(dest_j, aG, aRadius, t);
			ReHash(t, dest_code);
			x.add(t);
		}
	}
}

void WDK_FeatureGenerator::ReHash(SVector& x, unsigned aReHashCode) {
	vector<pair<int, double> > vec = x.unpack();
	vector<unsigned> hash_vec(2, 0);
	SVector z;
	for (unsigned i = 0; i < vec.size(); ++i) {
		int key = vec[i].first;
		double val = vec[i].second;
		hash_vec[0] = (unsigned) (key);
		hash_vec[1] = aReHashCode;
		unsigned code = HashFunc(hash_vec, mHashBitMask);
		z.set(code, val);
	}
	x = z;
}

void WDK_FeatureGenerator::GenerateVertexFeatures(unsigned aRootVertexIndex, const GraphClass& aG, unsigned aRadius, SVector& x) {
	if (mSparseFeatureFlagCache[aRootVertexIndex]) {
		x = mSparseFeatureCache[aRootVertexIndex];
	} else {
		unsigned root_degree = aG.VertexAdjacentListSize(aRootVertexIndex);
		if (root_degree <= mLowerVertexDegreeThreshold) { //if the vertex degree is lower than the threshold then just add a dummy feature and return
			SVector z;
			z.set(1, 1);
			x.add(z);
			return;
		}
		//...else
		//extract set of vertices in the ball of radius aRadius
		set<unsigned> ball;
		for (unsigned r = 0; r <= aRadius; r++) {
			vector<unsigned> dest_id_list = aG.GetFixedDistanceVertexIDList(aRootVertexIndex, r);
			ball.insert(dest_id_list.begin(), dest_id_list.end());
		}

		//induce the subgraph from the ball and return the new index for the root vertex
		GraphClass gal;
		unsigned root = aG.GetVertexInducedRootedSubGraph(ball, aRootVertexIndex, gal);
		gal.ComputePairwiseDistanceInformation(aRadius * 2);
		string root_label_string = gal.GetVertexLabelConcatenated(root) + ".0";
		unsigned root_label_code = HashFunc(root_label_string);

		vector<unsigned> edge_encoding(4);
		edge_encoding[0] = root_label_code;

		//determine distance of all vertices from root vertex
		vector<unsigned> vertex_distance_list;
		for (unsigned i = 0; i < gal.VertexSize(); ++i) {
			vertex_distance_list.push_back(gal.PairwiseDistance(root, i));
		}
		//for all vertices in ball extract all edges
		for (unsigned u = 0; u < gal.VertexSize(); ++u) {
			string u_label_string = gal.GetVertexLabelConcatenated(u) + "." + stream_cast<string>(vertex_distance_list[u]);
			unsigned u_label_code = HashFunc(u_label_string);
			//get all edges of vertex u
			vector<unsigned> vertex_adjacency_list = gal.GetVertexAdjacentList(u);
			vector<unsigned> edge_adjacency_list = gal.GetEdgeAdjacentList(u);
			for (unsigned j = 0; j < vertex_adjacency_list.size(); ++j) {
				unsigned v = vertex_adjacency_list[j];
				string v_label_string = gal.GetVertexLabelConcatenated(v) + "." + stream_cast<string>(vertex_distance_list[v]);
				//create a feature as: the root label code + the src vertex label+distance from root code + the dest (farthest) vertex label+distance from root code + the edge label code
				unsigned v_label_code = HashFunc(v_label_string);
				if (u_label_code < v_label_code) {
					edge_encoding[1] = u_label_code;
					edge_encoding[2] = v_label_code;
				} else {
					edge_encoding[1] = v_label_code;
					edge_encoding[2] = u_label_code;
				}
				unsigned e = edge_adjacency_list[j];
				string edge_label = gal.GetEdgeLabelConcatenated(e);
				unsigned hash_edge_label = HashFunc(edge_label);
				edge_encoding[3] = hash_edge_label;
				unsigned hash_edge_encoding = HashFunc(edge_encoding);
				SVector z;
				z.set(hash_edge_encoding, 1);
				x.add(z);
			}
		}
		mSparseFeatureFlagCache[aRootVertexIndex] = true;
		mSparseFeatureCache[aRootVertexIndex] = x;
	}
}

//----------------------------------------------------------------------------------------------------------------------------------------------
ANSPDK_FeatureGenerator::ANSPDK_FeatureGenerator(const std::string& id) :
		NSPDK_FeatureGenerator(id) {
}

void ANSPDK_FeatureGenerator::generate_feature_vector(const GraphClass& aG, SVector& x, const vector<unsigned>& aFirstEndpointList) {
	vector<unsigned> first_endpoint_list = aFirstEndpointList;
	GetFirstEndpoints(aG, first_endpoint_list);
	if (first_endpoint_list.size() == 0) throw std::logic_error("ERROR9: Something went wrong: cannot generate features over an empty set of first endpoints!");
	aG.ComputePairwiseDistanceInformation(mDistance, mRadius, first_endpoint_list);
	if (aG.Check() == false) throw logic_error("ERROR10: the graph data structure is not sound and it has not passed the checkup procedure"); //check graph data structure soundness

	InitFeatureCache(aG, mRadius);
	for (unsigned r = 0; r <= mRadius; r++) {
		for (unsigned d = 0; d <= mDistance; d++) {
			SVector z;
			for (unsigned i = 0; i < first_endpoint_list.size(); i++) {
				unsigned src_id = first_endpoint_list[i];
				if (aG.GetVertexViewPoint(src_id) && aG.GetVertexKernelPoint(src_id) && aG.GetVertexAlive(src_id)) { //proceed to extract features only if the *src* vertex is a kernel point and is alive
					GenerateVertexFeatures(src_id, aG, r, d, z);
				} else if (aG.GetVertexAbstraction(src_id) && aG.GetVertexAlive(src_id)) {
					GenerateAbstractVertexFeatures(src_id, aG, r, d, z);
				}
			}
			if (mNormalization) z.normalise();
			x.add(z);
		}
	}

	if (mNormalization) x.normalise();
	if (mMinKernel) ConvertSparseVectorToMinFeatureVector(x);
	if (mDebugVerbosity > 0) {
		cout << x << endl;
		OutputFeatureMap(cout);
		aG.Output(cout);
	}
}

void ANSPDK_FeatureGenerator::generate_vertex_feature_vector(const GraphClass& aG, vector<SVector>& x_list, const vector<unsigned>& aFirstEndpointList) {
	vector<unsigned> first_endpoint_list = aFirstEndpointList;
	GetFirstEndpoints(aG, first_endpoint_list);
	if (first_endpoint_list.size() == 0) throw std::logic_error("ERROR6: Something went wrong: cannot generate features over an empty set of first endpoints!");
	aG.ComputePairwiseDistanceInformation(mDistance, mRadius, first_endpoint_list);
	if (aG.Check() == false) throw logic_error("ERROR11: the graph data structure is not sound and it has not passed the checkup procedure"); //check graph data structure soundness

	InitFeatureCache(aG, mRadius);
	for (unsigned i = 0; i < first_endpoint_list.size(); i++) {
		SVector z;
		unsigned src_id = first_endpoint_list[i];
		if (aG.GetVertexViewPoint(src_id) && aG.GetVertexKernelPoint(src_id) && aG.GetVertexAlive(src_id)) { //proceed to extract features only if the *src* vertex is a kernel point and is alive
			for (unsigned r = 0; r <= mRadius; r++) {
				for (unsigned d = 0; d <= mDistance; d++) {
					GenerateVertexFeatures(src_id, aG, r, d, z);
				}
			}
		} else if (aG.GetVertexAbstraction(src_id) && aG.GetVertexAlive(src_id)) {
			for (unsigned r = 0; r <= mRadius; r++) {
				for (unsigned d = 0; d <= mDistance; d++) {
					GenerateAbstractVertexFeatures(src_id, aG, r, d, z);
				}
			}
		}
		if (mMinKernel) ConvertSparseVectorToMinFeatureVector(z);
		x_list.push_back(z);
	}
	if (mDebugVerbosity > 0) {
		for (unsigned i = 0; i < x_list.size(); ++i)
			cout << i << " " << x_list[i] << endl;
		OutputFeatureMap(cout);
		aG.Output(cout);
	}
}

void ANSPDK_FeatureGenerator::GenerateAbstractVertexFeatures(unsigned aSrcID, const GraphClass& aG, unsigned aRadius, unsigned aDistance, SVector& x) {
	vector<unsigned> endpoint_list(4);
	endpoint_list[0] = aRadius;
	endpoint_list[1] = aDistance;

	//ensure that the src vertex is of the abstraction type
	if (aG.GetVertexAbstraction(aSrcID) == false) throw std::logic_error("ERROR2: Something went wrong: expecting an abstraction vertex, but abstraction test fails.");
	//extract all adjacent vertices and partition them into part_of (lower level) and abstraction_of (upper level)
	vector<unsigned> part_of_list;
	vector<unsigned> abstraction_of_list;

	vector<unsigned> vertex_adjacency_list = aG.GetVertexAdjacentList(aSrcID);
	vector<unsigned> edge_adjacency_list = aG.GetEdgeAdjacentList(aSrcID);
	if (vertex_adjacency_list.size() != edge_adjacency_list.size()) throw std::logic_error("ERROR3: Something went wrong: expecting vertex adjacency list to be the same size as the edge adjacency list.");
	if (vertex_adjacency_list.size() == 0) throw std::logic_error("ERROR3b: Something went wrong: expecting a non empty vertex adjacency list for each abstract vertex.");
	for (unsigned i = 0; i < vertex_adjacency_list.size(); ++i) {
		unsigned child_vertex_id = vertex_adjacency_list[i];
		unsigned child_edge_id = edge_adjacency_list[i];
		if (aG.GetEdgePartOf(child_edge_id)) part_of_list.push_back(child_vertex_id);
		if (aG.GetEdgeAbstractionOf(child_edge_id)) abstraction_of_list.push_back(child_vertex_id);
	}

	//starting from each upper level vertex find all vertices at distance aDistance
	if (abstraction_of_list.size() == 0) throw std::logic_error("ERROR5: Something went wrong: expecting a non empty abstraction_of list.");
	set<unsigned> abstraction_of_set;
	for (unsigned i = 0; i < abstraction_of_list.size(); ++i) {
		unsigned v = abstraction_of_list[i];
		vector<unsigned> dest_id_list = aG.GetFixedDistanceVertexIDList(v, aDistance);
		abstraction_of_set.insert(abstraction_of_list.begin(), abstraction_of_list.end());
	}
	//starting from each lower level vertex find all vertices at distance aDistance
	if (part_of_list.size() == 0) throw std::logic_error("ERROR4: Something went wrong: expecting a non empty part_of list.");
	set<unsigned> part_of_set;
	for (unsigned i = 0; i < part_of_list.size(); ++i) {
		unsigned v = part_of_list[i];
		vector<unsigned> dest_id_list = aG.GetFixedDistanceVertexIDList(v, aDistance);
		part_of_set.insert(part_of_list.begin(), part_of_list.end());
	}
	//make all possible pairs of distant lower level vertices with distant upper level vertices
	for (set<unsigned>::iterator it = part_of_set.begin(); it != part_of_set.end(); ++it) {
		unsigned part_of_id = *it;
		unsigned part_of_code = GenerateVertexNeighbourhoodHashCode(part_of_id, aG, aRadius);
		endpoint_list[2] = part_of_code;
		for (set<unsigned>::iterator jt = abstraction_of_set.begin(); jt != abstraction_of_set.end(); ++jt) {
			unsigned abstraction_of_id = *jt;
			//build features with one neighborhood graph signature from the lower level and one from the upper
			unsigned abstraction_of_code = GenerateVertexNeighbourhoodHashCode(abstraction_of_id, aG, aRadius);
			endpoint_list[3] = abstraction_of_code;
			unsigned code = HashFunc(endpoint_list, mHashBitMask);
			if (mDebugVerbosity > 0) mDebugInfo.StoreFeatureCodeToFeatureInfo(code, endpoint_list);
			SVector z;
			z.set(code, 1);
			x.add(z);
		}
	}
}

//----------------------------------------------------------------------------------------------------------------------------------------------
PBK_FeatureGenerator::PBK_FeatureGenerator(const std::string& id) :
		NSPDK_FeatureGenerator(id), mANSPDK("anspdk" + id), mWDK("wdk" + id) {
}

void PBK_FeatureGenerator::generate_feature_vector(const GraphClass& aG, SVector& x, const vector<unsigned>& aFirstEndpointList) {
	SVector nspdk_x;
	mANSPDK.generate_feature_vector(aG, nspdk_x, aFirstEndpointList);
	x.add(nspdk_x);
	SVector wdk_x;
	mWDK.generate_feature_vector(aG, wdk_x, aFirstEndpointList);
	x.add(wdk_x);
	if (mNormalization) x.normalise();
}

void PBK_FeatureGenerator::generate_vertex_feature_vector(const GraphClass& aG, vector<SVector>& x_list, const vector<unsigned>& aFirstEndpointList) {
	vector<SVector> nspdk_list;
	mANSPDK.generate_vertex_feature_vector(aG, nspdk_list, aFirstEndpointList);
	vector<SVector> wdk_list;
	mWDK.generate_vertex_feature_vector(aG, wdk_list, aFirstEndpointList);
	for (unsigned i = 0; i < nspdk_list.size(); ++i) {
		SVector z;
		z.add(nspdk_list[i]);
		z.add(wdk_list[i]);
		x_list.push_back(z);
	}
}