main.cpp 31.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
#include <iostream>
#include <vector>
#include <fstream>
#include <sstream>
#include <iterator>
#include <functional>
#include <utility>
#include <algorithm>
#include <string>
#include <cctype>
#include <cstring>

#include <unistd.h>
#include <sys/stat.h>
#include <string.h>
#include <boost/algorithm/string.hpp>
#include <math.h>

#include "Extract_data/fa.h"
#include "rna.h"
#include "structure.h"
#include "solinteraction.h"
#include "complexe.h"
#include "predictor.h"
#include "IP/ipcomp.h"
#include "Extract_data/extract_user_ct.h"
#include "Extract_data/extract_str_inter.h"
#include "Extract_data/extract_probing_data.h"
#include "IP/findkbestparetoset.h"
#include "utils.h"
#include "graph.h"

//#define _DEBUG

//Probleme de la clique et decomposition de graph pour les pseudonoeuds
//Heuristique multicritere
// TODO Verifier la seed de predictor
// TODO Enlever variables calculs temps

// Remove clashes from base pair list and return several lists of base pairs with no clashes
std::vector < std::vector < std::pair < std::pair < uint, uint > , std::pair < uint, uint > > > > removeClashes(
        std::vector < std::pair < std::pair < uint, uint > , std::pair < uint, uint > > > listBp, size_t i) {

    std::vector < std::vector < std::pair < std::pair < uint, uint > , std::pair < uint, uint > > > > listBps, listBps2;

    if (i != listBp.size() -1) {
        // Check if there are clashes
        std::vector < std::pair < std::pair < uint, uint > , std::pair < uint, uint > > > lbp, listBp2;
        std::vector < int > clashes, clashes2;
        // Look in the listBp[i+1:end] if there are clashes with the base pair i
        std::copy(listBp.begin() + i + 1, listBp.end(),  std::back_inserter(lbp));
        clashes = find_bp_with_i(lbp, listBp[i].first);
        clashes2 = find_bp_with_i(lbp, listBp[i].second);
        clashes.insert(clashes.end(), clashes2.begin(), clashes2.end());
        // If there are clashes
        if (!clashes.empty()) {
            bool consistent = true;
            // Create for each clash a new listBp without the other clashes
            // clashes.push_back(-1);
            for (int j = int(clashes.size())-1, size = -1; j != size; j--) {
                // The bp is consistent if it is part of an helix
                consistent = false;
                for (ulong k = 0, size2 = listBp.size(); k != size2 or !consistent; k++) {
                    if ((listBp[k].first.first == listBp[ulong(clashes[ulong(j)])].first.first
                         and listBp[k].second.first == listBp[ulong(clashes[ulong(j)])].second.first)
                            and (
                         (listBp[k].first.second > listBp[ulong(clashes[ulong(j)])].first.second
                         and listBp[k].second.second < listBp[ulong(clashes[ulong(j)])].second.second)
                            or (listBp[k].first.second < listBp[ulong(clashes[ulong(j)])].first.second
                                and listBp[k].second.second > listBp[ulong(clashes[ulong(j)])].second.second)
                                )) {
                        consistent = true;
                    }
                }
                // If the remaining base pair is consistent, remove clashes in the following
                if (consistent) {
                    listBp2 = listBp;
                    for(int k = int(clashes.size())-1, size2 = -1; k != size2; k--)
                        if (k != j) {
                            listBp2.erase(listBp2.begin() + clashes[ulong(k)] + i+1);
                        }
                    // Remove clashes in the following
                    listBps2 = removeClashes(listBp2, i+1);
                    listBps.insert(listBps.end(), listBps2.begin(), listBps2.end());
                }
            }
        } else {
            listBps = removeClashes(listBp, i+1);
        }
    } else {
        listBps.push_back(listBp);
    }

    return listBps;
}

std::vector < Complexe > convertCliquesToComplexes(
        const std::vector < std::tuple < std::vector < uint >, std::vector < float > > > &cliques0,
        const std::vector < unsigned int > &vertices0,
        const std::vector < Rna > &rnaList_,
        const std::vector < Structure > &strs_,
        const std::vector < SolInteraction > &inters_,
        int lastStr) {

    std::vector < unsigned int > rnaId;
    std::vector < std::string > rnaName;
    std::vector < std::string > seqList;

    std::vector < Complexe > comps;
    std::vector < std::pair < std::pair < uint, uint > , std::pair < uint, uint > > > listBP;
    std::vector <
            std::vector < std::pair < std::pair < uint, uint > , std::pair < uint, uint > > > > listBPs;
    std::vector < std::pair < uint, uint > > lbp;
    std::vector < uint > clique0;
    size_t i, size, j, size2, k, size3;

    for(i = 0, size = uint(rnaList_.size()); i != size; i++) {
        rnaId.push_back(uint(i));
        rnaName.push_back(rnaList_[i].get_name_());
        seqList.push_back(rnaList_[i].get_seq_());
    }

    for(i = 0, size = uint(cliques0.size()); i != size; i++) {
        listBP.clear();
        lbp.clear();

        clique0 = std::get<0>(cliques0[i]);

        if(!clique0.empty()){
            for(j=0, size2 = uint(clique0.size()); j != size2; j++) {
                if (int(clique0[j]) <= lastStr) {
                    lbp = strs_[vertices0[clique0[j]]].get_listBp_();
                    for (k = 0, size3 = lbp.size(); k != size3; k++)
                        listBP.push_back(
                                    std::make_pair(
                                        std::make_pair(strs_[vertices0[clique0[j]]].get_rna_(),
                                                       lbp[k].first),
                                    std::make_pair(strs_[vertices0[clique0[j]]].get_rna_(),
                                                   lbp[k].second) ));
                } else {
                    if(lastStr != -1){
                        lbp = inters_[vertices0[clique0[j]]-lastStr-1].get_listBp_();
                    }else {
                        lbp = inters_[vertices0[clique0[j]]].get_listBp_();
                    }
                    for (k = 0, size3 = lbp.size(); k != size3; k++) {
                        if(lastStr != -1){
                        listBP.push_back(
                                    std::make_pair(
                                        std::make_pair(inters_[vertices0[clique0[j]]-uint(lastStr)-1].get_rna1_(),
                                                       lbp[k].first),
                                    std::make_pair(inters_[vertices0[clique0[j]]-uint(lastStr)-1].get_rna2_(),
                                                   lbp[k].second) ));
                        } else {
                            listBP.push_back(
                                        std::make_pair(
                                            std::make_pair(inters_[vertices0[clique0[j]]].get_rna1_(),
                                                           lbp[k].first),
                                        std::make_pair(inters_[vertices0[clique0[j]]].get_rna2_(),
                                                       lbp[k].second) ));
                        }
                    }

                }
            }
            std::sort(listBP.begin(), listBP.end());
            // Remove redundance in listBP
            for(j = 0, size2 = listBP.size()-1; j != size2; j++) {
                if (listBP[j] == listBP[j+1]) {
                    listBP.erase(listBP.begin() + j);
                    size2--;
                    j--;
                }
            }

            listBPs = removeClashes(listBP, 0);

            for (j = 0, size2 = listBPs.size(); j != size2; j++)
                comps.push_back(
                            Complexe (rnaId, rnaName, seqList, listBPs[j], std::get<1>(cliques0[i])));
        }
    }

    return comps;
}

// Delete pointers
void del(std::vector < Interloop * > ctIntLoop_,
         std::vector < Hairpinloop * > ctHairLoop_,
         std::vector < Helix * > ctHelix_,
         std::vector < Multiloop * > ctMultiLoop_,
         std::vector < Pseudoknot * > ctPseudo_)
{
    size_t j, size2;
    for (j = 0, size2 = ctIntLoop_.size(); j != size2; j++)
        delete ctIntLoop_[j];
    for (j = 0, size2 = ctHairLoop_.size(); j != size2; j++)
        delete ctHairLoop_[j];
    for (j = 0, size2 = ctHelix_.size(); j != size2; j++)
        delete ctHelix_[j];
    for (j = 0, size2 = ctMultiLoop_.size(); j != size2; j++)
        delete ctMultiLoop_[j];
    for (j = 0, size2 = ctPseudo_.size(); j != size2; j++)
        delete ctPseudo_[j];
}


void outputCliques (
        std::string CLIQUESfile,
        const std::vector < std::tuple < std::vector < uint >, std::vector < float > > > &cliques,
        const std::vector < unsigned int > &vertices,
        const std::vector < float > &verticesWE,
        const std::vector < float > &verticesWP,
        const std::vector < float > &verticesWCt,
        const uint &nbEdges,
        const double &density,
        const double &total_time5
        ) {

    std::ofstream cliquesFile;
    std::vector < std::string > vertices_str;
    std::vector < std::string > cliques_str;

    for(size_t a=0, size = cliques.size(); a != size; a++) {
        vertices_str.clear();
        for(size_t b = 0, size2 = std::get<0>(cliques[a]).size(); b != size2; b++){
            vertices_str.push_back( "(" + std::to_string(std::get<0>(cliques[a])[b] + 1)
                            + ", {" + std::to_string(-verticesWE[std::get<0>(cliques[a])[b]])
                            + ", " +  std::to_string(verticesWP[std::get<0>(cliques[a])[b]])
                            + ", " + std::to_string(verticesWCt[std::get<0>(cliques[a])[b]])
                            + "})" );
        }
        cliques_str.push_back( "{ " + join(vertices_str, " | ") + "}\tweight: {"
                      + std::to_string(-std::get<1>(cliques[a])[1]) + ", "
                      + std::to_string(std::get<1>(cliques[a])[2]) + ", "
                      + std::to_string(std::get<1>(cliques[a])[0]) + "}" );
    }

    cliquesFile.open(CLIQUESfile);
    cliquesFile << "|V|=" << vertices.size() << "\t|E|=" << nbEdges << "\td=" << density << std::endl;
    for(size_t a=0, size = cliques_str.size(); a != size; a++) {
        cliquesFile << cliques_str[a] << std::endl;
    }
    cliquesFile << "found: " << cliques.size() << " cliques\ttook: " << total_time5 << "s" << std::endl;
    cliquesFile.close();
}


// Man RCPred
void usage()
{
    std::cout << "C-RCPred (Constrained RNA Complex Prediction)" << std::endl
              << " -f       Input fasta file" << std::endl
              << " -s       Input secondary structure files," << std::endl
              << " -i       Input interaction secondary structure files," << std::endl
              << " -c       Constraint files where constraints are in the same order than the secondary structure and interaction files" << std::endl
              << " -p       Probing data file for each RNA, in the same order than the fasta files (if no data for an RNA, an empty file is needed)" << std::endl
              << " -o       Format of output \"d\" (dot-parenthesis, default), \"j\" (JSON) or \"b\" (base pair list format)" << std::endl
              << " -e       Energy model (0: No energy model; use energies computed by upstream tools, 1: ViennaRNA package model; default, 2: NUPACK model)" << std::endl
              << " -t       Threshold for compatibility RNA (0->100, default 100)" << std::endl
              << " -l       Lower probing threshold (0->100, if not specified, probing values between 0% and the upper threshold once normalized will not be taken into account)" << std::endl
              << " -u       Upper probing threshold  (0->100, if not specified, probing values between the lower threshold and 100% once normalized will not be taken into account)" << std::endl
              << " -g       Output graph file" << std::endl
              << " -k       Output cliques predicted" << std::endl
              << " -q       Output cliques predicted without duplicates" << std::endl
              << " -m       Maximum number of structures to output" << std::endl
              << " -h       Shows this message" << std::endl;
}

// Main
int main(int argc, char *argv[]) {
    std::string SEQfile = "", STRfile = "", INTfile = "", PROBINGfile = "", CTfile = "", printing = "d", GRAPHfile = "", CLIQUESfile = "", CLIQUESfile2 = "";
    unsigned int T = 1000, I = 2000, energyModel = 1;
    float threshold = 100, lowerThresProbing = 20, upperThresProbing = 80;
    float alphas = 0.7, alphar = 0.92, Po = 0.75;
    uint maxSol = 50;


    if(argc > 1) {
        // Parse options
        char ch;
        while ((ch=char(getopt(argc, argv, "hf:s:i:c:o:t:e:p:l:u:g:k:q:m:?")))!=-1) {
            switch (ch) {
            case 'f':
                SEQfile = optarg;
                break;
            case 's':
                STRfile = optarg;
                break;
            case 'i':
                INTfile = optarg;
                break;
            case 'c':
                CTfile = optarg;
                break;
            case 'o':
                printing = optarg;
                break;
            case 'g':
                GRAPHfile = optarg;
                break;
            case 'k':
                CLIQUESfile = optarg;
                break;
            case 'q':
                CLIQUESfile2 = optarg;
                break;
            case 'm':
                maxSol = uint(atoi(optarg));
                break;
            case 'e':
                energyModel = uint(atoi(optarg));
                if (energyModel != 0 and energyModel != 1 and energyModel != 2 and energyModel != 3) {
                    std::cout << "-e: value must be 0, 1, 2 or 3." << std::endl;
                    usage();
                    return EXIT_SUCCESS;
                }
                break;
            case 't':
                threshold = atof(optarg);
                if (threshold < 0 or threshold > 100) {
                    std::cout << "-t: value must be between 0 and 100." << std::endl;
                    usage();
                    return EXIT_SUCCESS;
                }
                break;
            case 'p':
                PROBINGfile = optarg;
                break;
            case 'l':
                if (atof(optarg) < 0 or atof(optarg) > 100) {
                    std::cout << "-l: value must be between 0 and 100." << std::endl;
                    usage();
                    return EXIT_SUCCESS;
                }
                else {
                  lowerThresProbing = atof(optarg) ;
                }
                break;
            case 'u':
                if (atof(optarg) < 0 or atof(optarg) > 100) {
                    std::cout << "-u: value must be between 0 and 100." << std::endl;
                    usage();
                    return EXIT_SUCCESS;
                }
                else {
                  upperThresProbing = atof(optarg);
                }
                if (upperThresProbing <= lowerThresProbing) {
                    std::cout << "-u: value must be greater than -l value." << std::endl;
                    usage();
                    return EXIT_SUCCESS;
                }
                break;
            case 'h': case '?': default:
                std::cout << "help" << std::endl;
                usage();
                return EXIT_SUCCESS;
            }
        }
    } else {
        usage();
        return EXIT_SUCCESS;
    }



    if(SEQfile == "") {
        std::cout << "Fasta file is missing." << std::endl;
        return EXIT_FAILURE;
    } else {
        std::vector < Rna > rnaList_; // Vector of RNA sequences
        std::vector < Structure > strs_; // Vector of structures
        std::vector < SolInteraction > inters_; // Vector of interactions
        std::vector < std::vector < Helix > > helices_; // Vector of helices for each pair of RNA (G2 graph)

        std::vector< std::tuple < std::pair < uint, uint >, std::pair < uint, uint >, uint > > ctAppTwo_; // Vector of Weak constraints of pairs of bases that must be paired together
        std::vector< std::tuple < uint, uint, uint > > ctApp_;   // Vector of Weak constraints of bases that must be paired of a complex
        std::vector< std::tuple < uint, uint, uint > > ctSingle_;   // Vector of Weak constraints of bases that must not be paired of a complex
        std::vector < Interloop * > ctIntLoop_; // Vector of Weak constraints of internal loops
        std::vector < Hairpinloop * > ctHairLoop_; // Vector of Weak constraints of hairpin loops
        std::vector < Helix * > ctHelix_;   // Vector of Weak constraints of helixs
        std::vector < Multiloop * > ctMultiLoop_;   // Vector of Weak constraints of multiloops
        std::vector < Pseudoknot * > ctPseudo_;   // Vector of Weak constraints of pseudoknots
        unsigned long i, j, size, size2;

        // Extracting rnas from the fasta file
        Fasta fa;
        try {
            fa = Fasta();
            fa.load(SEQfile.c_str());
            for(j = 0, size2 = uint(fa.seq().size()); j != size2; j++) {

                std::string seq = Rna::format(fa.seq()[j]);
                if (Rna::check_seq(seq)) {
                    rnaList_.push_back(Rna(fa.name()[j], seq));
                } else {
                    throw std::string("The sequence is not supported by the software (allowed nucleosides: A, U, G, C, I, Q, D, T, S, X, B, O, N, R, Y).");
                }
            }

            // Set id of each RNA
            for(i = 0, size = uint(rnaList_.size()); i != size; i++)
                rnaList_[i].set_id_(uint(i));

            // Check number of structure files
            if(STRfile == "") {
                std::cout << "Secondary structure file is missing.";
                usage();
                return EXIT_FAILURE;
            } else {
                // Check number of interaction files
                if(INTfile == "") {
                    std::cout << "Interaction file is missing." << std::endl;
                    usage();
                    return EXIT_FAILURE;
                } else {

                    // Extracting constraints
                    uint nbHardCT =0;
                    if (CTfile != "") {
                        extract_ct(CTfile, rnaList_, ctAppTwo_, ctApp_,
                                        ctSingle_, ctIntLoop_, ctHairLoop_,
                                        ctHelix_, ctMultiLoop_, ctPseudo_, nbHardCT);
                    }

                    if(!PROBINGfile.empty()) {
                        extract_probing(PROBINGfile, rnaList_);
                        if (lowerThresProbing == -10 and upperThresProbing == 110) {
                            // If there is probing data but the user did not specify any probing threshold,
                            // a default threshold is applied
                            lowerThresProbing = 5;
                            upperThresProbing = 95;
                        }
                    }

                    // Extracting secondary structures
                    extract_str(STRfile, rnaList_, strs_, ctAppTwo_, ctApp_,
                                ctSingle_,  ctIntLoop_, ctHairLoop_, ctHelix_,
                                ctMultiLoop_,  ctPseudo_, energyModel, nbHardCT,
                                lowerThresProbing, upperThresProbing);

                    // Extracting interactions
                    extract_inter(INTfile, rnaList_, inters_, helices_,
                                  ctAppTwo_, ctHelix_, ctPseudo_, energyModel, nbHardCT,
                                  lowerThresProbing, upperThresProbing);


                    // MODELIZE GRAPHS
                    if(int(rnaList_.size()) > 1) {
                        // G1 GRAPH
                        std::vector < unsigned int > vertices0;
                        std::vector < float > verticesWCt; // User constraint weight
                        std::vector < float > verticesWP; // Probing weight
                        std::vector < float > verticesWE; // Energy weight
                        // Vector of linked vertices for any vertex
                        std::vector < std::vector < unsigned int > > Nv0;
                        // Vector of no linked vertices for any vertex
                        std::vector < std::vector < unsigned int > > NvB0;

                        // G2 GRAPHS
                        // Vertex vectors of each G2 graphs
                        // Vertices are sorted by the beginning of each interval
                        std::vector < std::vector < unsigned int > > G2vertices0;
                        // Nv vectors of each G2 graphs
                        std::vector < std::vector < std::vector < unsigned int > > > G2Nv0;
                        // G1 vertex correspondance vector of each G2 graph
                        std::vector < std::vector < unsigned int > > G2G1correspondance0;

                        // Constraints vertices for the two graphs
                        std::vector < unsigned int > ctVertices, rmVertices;

                        uint nbEdges;
                        int lastStr;
                        modelGraph(rnaList_, strs_, inters_, helices_, vertices0,
                                        verticesWCt, verticesWP, verticesWE, Nv0,
                                        NvB0, G2vertices0, G2Nv0, G2G1correspondance0,
                                        threshold, SEQfile, nbEdges, lastStr);

                        // G1 GRAPH
                        std::vector < unsigned int > vertices = vertices0;
                        std::vector < std::vector < unsigned int > > Nv = Nv0;
                        std::vector < std::vector < unsigned int > > NvB = NvB0;
                        // G2 GRAPHS
                        std::vector < std::vector < unsigned int > > G2vertices = G2vertices0;
                        std::vector < std::vector < std::vector < unsigned int > > > G2Nv = G2Nv0;
                        std::vector < std::vector < unsigned int > > G2G1correspondance = G2G1correspondance0;

                        if (GRAPHfile != "") {
                            // OUTPUT GRAPH IN FILE
                            std::ofstream graphFile;
                            graphFile.open(GRAPHfile);

                            // Nb vertices
                            graphFile << "i\t" << vertices.size() << "\tw\t3" << std::endl;

                            // Structures vertices
                            for(size_t c = 0, size = strs_.size(); c != size; c++) {
                                graphFile << std::to_string(-verticesWE[c]) << "\t";
                                graphFile << verticesWP[c] << "\t";
                                graphFile << verticesWCt[c];
                                graphFile << std::endl;
                            }

                            // Interactions vertices
                            for(size_t c = 0, size = inters_.size(); c != size; c++) {
                                graphFile << std::to_string(-verticesWE[c+ (lastStr + 1)]) << "\t";
                                graphFile << verticesWP[c+ (lastStr + 1)] << "\t";
                                graphFile << verticesWCt[c+ (lastStr + 1)];
                                graphFile << std::endl;
                            }

                            // Edges
                            for(size_t c = 0, size = Nv.size(); c != size; c++) {
                                for(size_t d = 0, size2 = Nv[c].size(); d != size2; d++) {
                                    if(Nv[c][d] > c) {
                                        graphFile << "e\t" << c + 1 << "\t" << Nv[c][d] + 1 << std::endl; // + 1 to make vertices start with 1
                                    }
                                }
                            }

                            graphFile.close();
                        }


                        if(int(vertices.size()) /*>= int(rnaList_.size())*/ > 0) {

                            time_t s5, e5;
                            double total_time5;
                            s5 = clock();

                            // HEURISTIC
                            Predictor predictor = Predictor(vertices, verticesWCt, verticesWP, verticesWE,
                                                            Nv, NvB,
                                                            G2vertices, G2Nv, G2G1correspondance);

                            double density = 2*double(nbEdges) /( double(vertices.size()) * (double(vertices.size()) - 1.0)); // False because nbEdges always equal to 0, nbEdges not updated in modelGraph
                            I = uint(40488.27*density); // I not used in predictor.predict(), not necessary and False because density is False

                            std::vector < std::tuple < std::vector < uint >, std::vector < float > > > cliques;

                            // Default pseudoknot Level = 3
                            bool paretoRespectHardCT = false;
                            uint loop = 0;
                            while(!paretoRespectHardCT and loop<2) {
                                predictor = Predictor(vertices, verticesWCt, verticesWP, verticesWE,
                                                            Nv, NvB,
                                                            G2vertices, G2Nv, G2G1correspondance);
                                predictor.predict(T, alphas, alphar, Po, 3, I, uint(time(NULL)), nbHardCT);
                                cliques = predictor.get_best_cliques_();
                                for(uint i = 0, size = cliques.size(); i != size; i++) {
                                    if (std::get<1>(cliques[i])[0] >= 100*nbHardCT)
                                        paretoRespectHardCT=true;
                                }
                                loop++;
                            }

                            e5 = clock();
                            total_time5 = double(e5-s5)/double(CLOCKS_PER_SEC);

                            cliques = predictor.get_best_cliques_();

                            nbEdges = 0;
                            for(size_t a = 0, size = Nv.size(); a != size; a++) {
                                for(size_t b = 0, size2 = Nv[a].size(); b != size2; b++) {
                                    if(Nv[a][b] > a) {
                                        nbEdges = nbEdges + 1;
                                    }
                                }
                            }
                            density = 2*double(nbEdges) / (double(vertices.size())*(double(vertices.size())-1.0));


                            if(!cliques.empty()) {

                                if(CLIQUESfile != "") {
                                    outputCliques(CLIQUESfile, cliques, vertices, verticesWE, verticesWP, verticesWCt, nbEdges, density, total_time5);
                                }

                                // CONVERT CLIQUES TO COMPLEXES
                                std::vector < std::tuple < std::vector < uint >, std::vector < float > > > cliques0 = cliques;
                                std::vector < unsigned int > clique, clique0, intersec;
                                std::vector < float > weights;

                                std::vector < Complexe > comps = convertCliquesToComplexes(cliques0, vertices0,
                                        rnaList_, strs_, inters_, lastStr);


                                if (comps.size() != 0) {

                                    // REMOVE DUPLICATE COMPLEXES
                                    Complexe c;
                                    std::vector < Complexe > comps2; // comps without duplicates
                                    std::vector < std::tuple < std::vector < uint >, std::vector < float > > > cliques2; // cliques corresponding to comps2
                                    comps2.clear();
                                    bool duplicate;

                                    for(i = 0; i != comps.size(); i++) { // load listsBP_ for each complex
                                        comps[i].loadListsBP_();
                                    }
                                    for(i = 0; i != comps.size(); i++) {
                                        duplicate = false;
                                        for(j = 0; j != comps2.size() and duplicate == false; j++) {
                                            if (c.isEquivalent(comps[i], comps2[j])) { // if the 2 complexes are the same
                                                duplicate = true;
                                            }
                                        }
                                        if (duplicate == false) {
                                            comps2.push_back(comps[i]);
                                            cliques2.push_back(cliques0[i]);
                                        }
                                    }

                                    if(CLIQUESfile2 != "") {
                                        outputCliques(CLIQUESfile2, cliques2, vertices, verticesWE, verticesWP, verticesWCt, nbEdges, density, total_time5);
                                    }

                                        if(printing == "j") {
                                            for(i = 0; i != comps2.size() and i < maxSol; i++) {
                                                std::cout << comps2[i].to_Json() << std::endl;
                                            }
                                        } else if(printing == "b") {
                                            for(i = 0; i != comps2.size() and i < maxSol; i++) {
                                                std::cout << comps2[i].to_forna() << std::endl;
                                            }
                                        } else {
                                            for(i = 0; i != comps2.size() and i < maxSol; i++) {
                                                std::cout << comps2[i].to_string() << std::endl;
                                            }
                                        }

                                } else {
                                    std::cout << "No solution available." << std::endl;
                                }

                                del(ctIntLoop_, ctHairLoop_, ctHelix_, ctMultiLoop_, ctPseudo_);
                                return EXIT_SUCCESS;
                            } else {
                                del(ctIntLoop_, ctHairLoop_, ctHelix_, ctMultiLoop_, ctPseudo_);
                                std::cout << "No solution available for this seed with the given structures and interactions. Please try again." << std::endl;
                                return EXIT_FAILURE;
                            }

                        } else {
                            del(ctIntLoop_, ctHairLoop_, ctHelix_, ctMultiLoop_, ctPseudo_);
                            std::cout << "No solution available with the given structures and interactions." << std::endl;
                            return EXIT_FAILURE;
                        }
                    } // End of modelize graphs
                } // End check of number of interaction files
            } // End check of number of structure files

            del(ctIntLoop_, ctHairLoop_, ctHelix_, ctMultiLoop_, ctPseudo_);

        } catch (const std::string& str) {
            std::cout << str << std::endl;
            del(ctIntLoop_, ctHairLoop_, ctHelix_, ctMultiLoop_, ctPseudo_);
            return EXIT_FAILURE;
        }
    } // End of fasta file detected

    return EXIT_SUCCESS;
}