cparse.py 21.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
#  cparse.py: modified by Franck Pommereau (2018)

#  ---------------------------------------------------------------
#  cparse.py
#
#  Atul Varma
#  Python C Compiler - Parser
#  $Id: cparse.py,v 1.2 2004/05/27 16:25:08 varmaa Exp $
#  ---------------------------------------------------------------

import ply.yacc as yacc

from .clex import tokens

#  ---------------------------------------------------------------
#  ABSTRACT SYNTAX TREE - NODES
#  ---------------------------------------------------------------

class Node:
    "Base class for all nodes on the abstract syntax tree."

    def is_null(self):
        """Returns whether the node represents a null node."""

        return 0

    def is_const(self):
        """Returns whether the node is a constant numeric number
        (e.g., "5")."""

        return 0

    def has_address(self):
        """Returns whether the node has an address (i.e., is a valid
        lvalue)."""

        return hasattr(self, "has_addr")

    def set_has_address(self):
        """Tells the node that has an address (is an lvalue).
        Ultimately, the address of the node should be placed in the
        output_addr attribute."""

        self.has_addr = 1
        self.output_addr = 0

    def calculate(self):
        """Calculates the constant numeric value of the node and
        its subnodes, if one exists.  For instance, if a node
        corresponds to the expression "5+3", then this method
        would return 8."""

        return None

    def accept(self, visitor):
        """Accept method for visitor classes (see cvisitor.py)."""

        return self._accept(self.__class__, visitor)

    def _accept(self, klass, visitor):
        """Accept implementation.  This is actually a recursive
        function that dynamically figures out which visitor method to
        call.  This is done by appending the class' name to 'v', so if
        the node class is called MyNode, then this method tries
        calling visitor.vMyNode().  If that node doesn't exist, then
        it recursively attempts to call the visitor method
        corresponding to the class' superclass (e.g.,
        visitor.vNode())."""

        visitor_method = getattr(visitor, "v%s" % klass.__name__, None)
        if visitor_method == None:
            bases = klass.__bases__
            last = None
            for i in bases:
                last = self._accept(i, visitor)
            return last
        else:
            return visitor_method(self)

class NullNode(Node):
    """A null node is like a null terminator for AST's."""

    def __init__(self):
        self.type = 'void'

    def is_null(self):
        return 1

class ArrayExpression(Node):
    """This is an expression with array notation, like "a[5+b]"."""

    def __init__(self, expr, index):
        self.expr = expr
        self.index = index

class StringLiteral(Node):
    """A string literal, e.g. the string "Hello World" in
    printf("Hello World")."""

    def __init__(self, str):
        self._str = str
        self.type = PointerType(BaseType('char'))

    def append_str(self, str):
        self._str += str

    def get_str(self):
        return self._str

    def get_sanitized_str(self):
        """Returns a 'sanitized' version of the string, converting
        all carriage returns to '\n' symbols, etc."""

        return self._str.replace('\n', '\\n')

class Id(Node):
    """An identifier, which can correspond to the name of
    a function, variable, etc..."""

    def __init__(self, name, lineno):
        self.name = name
        self.lineno = lineno

class Const(Node):
    """A numeric constant (i.e., an integral literal), such as
    the number 5."""

    def __init__(self, value, type):
        self.value = value
        self.type = type

    def calculate(self):
        return self.value

    def is_const(self):
        return 1

def _get_calculated(node):
    """Attempts to calculate the numeric value of the expression,
    returning a Const node if it was able to convert the expression.
    If the expression isn't a constant expression like "5+3", then
    this function just returns the node unmodified."""

    result = node.calculate()
    if result != None:
        result = int(result)
        return Const(result, BaseType('int'))
    else:
        return node

class Unaryop(Node):
    """Any generic unary operator.  This is an abstract base class."""

    def __init__(self, node):
        self.expr = node

class Negative(Unaryop):
    """A negative unary operator, e.g. '-5'."""

    def calculate(self):
        val = self.expr.calculate()
        if val != None:
            return -val
        return None

class Pointer(Unaryop):
    """A pointer dereference, e.g. '*a'."""

    pass

class AddrOf(Unaryop):
    """An address-of operator, e.g. '&a'."""

    pass

class Binop(Node):
    """Any binary operator, such as that for arithmetic operations
    (+/-/*), assignment operations (=/+=/-=), and so forth."""

    # List of assignment operators.
    ASSIGN_OPS = ['=', '+=', '-=']

    def __init__(self, left, right, op):
        self.left = left
        self.right = right
        self.op = op

    def calculate(self):
        left = self.left.calculate()
        right = self.right.calculate()
        if left != None and right != None:
            return int(eval("%d %s %d" % (left, self.op, right)))
        else:
            return None

class IfStatement(Node):
    """An if/then/else statement."""

    def __init__(self, expr, then_stmt, else_stmt):
        self.expr = expr
        self.then_stmt = then_stmt
        self.else_stmt = else_stmt

class BreakStatement(Node):
    """A break statement (used while in a loop structure to bust out
    of it)."""

    pass

class ContinueStatement(Node):
    """A continue statement (used while in a loop structure to bust
    back to the beginning of it)."""

    pass

class ReturnStatement(Node):
    """A return statement, used to exit a function and optionally
    return a value."""

    def __init__(self, expr):
        self.expr = expr

class ForLoop(Node):
    """A for loop."""

    def __init__(self, begin_stmt, expr, end_stmt, stmt):
        self.expr = expr
        self.stmt = stmt
        self.begin_stmt = begin_stmt
        self.end_stmt = end_stmt

class WhileLoop(Node):
    """A while loop."""

    def __init__(self, expr, stmt):
        self.expr = expr
        self.stmt = stmt

class NodeList(Node):
    """A list of nodes.  This is an abstract base class."""

    def __init__(self, node=None):
        self.nodes = []
        if node != None:
            self.nodes.append(node)

    def add(self, node):
        self.nodes.append(node)

class ArgumentList(NodeList):
    """A list of arguments for a function expression.  e.g., the list
    '5,2,3' in 'a = my_func(5,2,3)'."""

    pass

class ParamList(NodeList):
    """A list of parameters for a function prototype, e.g. the list
    'int a, char b, char c' in 'int my_func(int a, char b, char c)'."""

    def __init__(self, node=None):
        NodeList.__init__(self, node)
        self.has_ellipsis = 0

class StatementList(NodeList):
    """Any list of statements.  For instance, this can be the list of
    statements in a function body."""

    pass

class TranslationUnit(NodeList):
    """A list of nodes representing the program itself."""

    pass

class DeclarationList(NodeList):
    """A list of variable declarations, such as the ones put
    at the beginning of a compound statement (e.g., the beginning
    of a function body)."""

    pass

class FunctionExpression(Node):
    """An execution of a function, e.g. 'my_func(a,b,c)'."""

    def __init__(self, function, arglist):
        self.function = function
        self.arglist = arglist

class CompoundStatement(Node):
    """A compound statement, e.g. '{ int i; i += 1; }'."""

    def __init__(self, declaration_list, statement_list):
        self.declaration_list = declaration_list
        self.statement_list = statement_list

class FunctionDefn(Node):
    """A node representing a function definition (its declaration
    and body)."""

    def __init__(self, declaration, body):
        self.type = declaration.type
        self.name = declaration.name
        self.extern = declaration.extern
        self.static = declaration.static
        self.body = body

class Declaration(Node):
    """A node representing a declaration of a function or
    variable."""

    def __init__(self, name, type=None):
        if type == None:
            type = NullNode()
        self.extern = 0
        self.static = 0
        self.type = type
        self.name = name
        self.is_used = 0

    def set_base_type(self, type):
        if self.type.is_null():
            self.type = type
        else:
            self.type.set_base_type(type)

    def add_type(self, type):
        type.set_base_type(self.type)
        self.type = type

#  ---------------------------------------------------------------
#  ABSTRACT SYNTAX TREE - TYPE SYSTEM
#  ---------------------------------------------------------------

class Type(Node):
    """A node representing the type of another node.  For instance,
    the Binop node representing '5 + a', where a is an int, will have
    a Type node associated with it that represents the fact that
    the result of the Binop is an int.

    Types can also be nested, so that for instance you can have
    a type like 'pointer(pointer(int))' which represents a
    double-pointer to an int.

    This is an abstract base class."""

    def __init__(self, child=None):
        if child == None:
            child = NullNode()
        self.child = child

    def set_base_type(self, type):
        """Set the base (innermost) type of a type.  For instance,
        calling this with a pointer(int) type on a pointer() type
        will give you a pointer(pointer(int))."""

        if self.child.is_null():
            self.child = type
        else:
            self.child.set_base_type(type)

    def get_string(self):
        """Return a string corresponding to the type, e.g.
        'pointer(pointer(int))'."""

        raise NotImplementedError()

    def get_outer_string(self):
        """Return only the outermost type of a type.  e.g.,
        calling this on a pointer(pointer(int)) type will
        return 'pointer'."""

        raise NotImplementedError()

    def is_function(self):
        """Returns whether or not this type represents a
        function."""

        return 0

class BaseType(Type):
    """A base type representing ints, chars, etc..."""

    def __init__(self, type_str, child=None):
        Type.__init__(self, child)
        self.type_str = type_str

    def get_string(self):
        return self.type_str

    def get_outer_string(self):
        return self.type_str

class FunctionType(Type):
    """A type representing a function (for function prototypes and
    function calls)."""

    def __init__(self, params=None, child=None):
        Type.__init__(self, child)
        if (params == None):
            params = NullNode()
        self.params = params

    def get_string(self):
        param_str = ""
        for param in self.params.nodes:
            param_str += "," + param.type.get_string()
        return "function(%s)->%s" % (param_str[1:], self.child.get_string())

    def get_outer_string(self):
        return 'function'

    def is_function(self):
        return 1

    def get_return_type(self):
        """Returns the return type of the function.  Internally,
        this is stored as the nested type within the function."""

        return self.child

    def get_params(self):
        """Returns the list of parameters for the function."""

        return self.params

class PointerType(Type):
    """A type representing a pointer to another (nested) type."""

    def get_string(self):
        return "pointer(%s)" % self.child.get_string()

    def get_outer_string(self):
        return 'pointer'

#  ---------------------------------------------------------------
#  PARSER GRAMMAR / AST CONSTRUCTION
#
#  The only thing the yacc grammar rules do is create an
#  abstract syntax tree.  Actual symbol table generation,
#  type checking, flow control checking, etc. are done by
#  the visitor classes (see cvisitors.py).
#  ---------------------------------------------------------------

# Precedence for ambiguous grammar elements.
precedence = (
    ('right', 'ELSE'),
)

class ParseError(Exception):
    "Exception raised whenever a parsing error occurs."
    pass

def p_translation_unit_01(t):
    '''translation_unit : external_declaration'''
    t[0] = TranslationUnit(t[1])

def p_translation_unit_02(t):
    '''translation_unit : translation_unit external_declaration'''
    t[1].add(t[2])
    t[0] = t[1]

def p_external_declaration(t):
    '''external_declaration : function_definition
                            | declaration'''
    t[0] = t[1]

def p_function_definition_01(t):
    '''function_definition : type_specifier declarator compound_statement'''
    t[2].set_base_type(t[1])
    t[0] = FunctionDefn(t[2], t[3])

def p_function_definition_02(t):
    '''function_definition : STATIC type_specifier declarator compound_statement'''
    t[3].static = 1
    t[3].set_base_type(t[2])
    t[0] = FunctionDefn(t[3], t[4])

def p_declaration_01(t):
    '''declaration : type_specifier declarator SEMICOLON'''
    if isinstance(t[2].type, FunctionType):
        t[2].extern = 1
    t[2].set_base_type(t[1])
    t[0] = t[2]

def p_declaration_02(t):
    '''declaration : EXTERN type_specifier declarator SEMICOLON'''
    t[3].extern = 1
    t[3].set_base_type(t[2])
    t[0] = t[3]

def p_declaration_list_opt_01(t):
    '''declaration_list_opt : empty'''
    t[0] = NullNode()

def p_declaration_list_opt_02(t):
    '''declaration_list_opt : declaration_list'''
    t[0] = t[1]

def p_declaration_list_02(t):
    '''declaration_list : declaration'''
    t[0] = DeclarationList(t[1])

def p_declaration_list_03(t):
    '''declaration_list : declaration_list declaration'''
    t[1].add(t[2])
    t[0] = t[1]

def p_type_specifier(t):
    '''type_specifier : INT
                      | CHAR'''
    t[0] = BaseType(t[1])

def p_declarator_01(t):
    '''declarator : direct_declarator'''
    t[0] = t[1]

def p_declarator_02(t):
    '''declarator : ASTERISK declarator'''
    t[2].set_base_type(PointerType())
    t[0] = t[2]

def p_direct_declarator_01(t):
    '''direct_declarator : ID'''
    t[0] = Declaration(t[1])

def p_direct_declarator_02(t):
    '''direct_declarator : direct_declarator LPAREN parameter_type_list RPAREN'''
    t[1].add_type(FunctionType(t[3]))
    t[0] = t[1]

def p_direct_declarator_03(t):
    '''direct_declarator : direct_declarator LPAREN RPAREN'''
    t[1].add_type(FunctionType(ParamList()))
    t[0] = t[1]

def p_parameter_type_list_01(t):
    '''parameter_type_list : parameter_list'''
    t[0] = t[1]

def p_parameter_type_list_02(t):
    '''parameter_type_list : parameter_list COMMA ELLIPSIS'''
    t[1].has_ellipsis = 1
    t[0] = t[1]

def p_parameter_list_01(t):
    '''parameter_list : parameter_declaration'''
    t[0] = ParamList(t[1])

def p_parameter_list_02(t):
    '''parameter_list : parameter_list COMMA parameter_declaration'''
    t[1].add(t[3])
    t[0] = t[1]

def p_parameter_declaration(t):
    '''parameter_declaration : type_specifier declarator'''
    # NOTE: this is the same code as p_declaration_01!
    p_declaration_01(t)

def p_compound_statement_01(t):
    '''compound_statement : LBRACE declaration_list_opt statement_list RBRACE'''
    t[0] = CompoundStatement(t[2], t[3])

def p_compound_statement_02(t):
    '''compound_statement : LBRACE declaration_list_opt RBRACE'''
    t[0] = CompoundStatement(t[2], NullNode())

def p_expression_statement(t):
    '''expression_statement : expression SEMICOLON'''
    t[0] = t[1]

def p_expression_01(t):
    '''expression : equality_expression'''
    t[0] = t[1]

def p_expression_02(t):
    '''expression : equality_expression ASSIGN expression
                  | equality_expression EQ_PLUS expression
                  | equality_expression EQ_MINUS expression'''
    t[0] = Binop(t[1], t[3], t[2])

def p_equality_expression_01(t):
    '''equality_expression : relational_expression'''
    t[0] = t[1]

def p_equality_expression_02(t):
    '''equality_expression : equality_expression EQ relational_expression
                           | equality_expression NOT_EQ relational_expression'''
    t[0] = _get_calculated(Binop(t[1], t[3], t[2]))

def p_relational_expression_01(t):
    '''relational_expression : additive_expression'''
    t[0] = t[1]

def p_relational_expression_02(t):
    '''relational_expression : relational_expression LESS additive_expression
                             | relational_expression GREATER additive_expression
                             | relational_expression LESS_EQ additive_expression
                             | relational_expression GREATER_EQ additive_expression'''
    t[0] = _get_calculated(Binop(t[1], t[3], t[2]))

def p_postfix_expression_01(t):
    '''postfix_expression : primary_expression'''
    t[0] = t[1]

def p_postfix_expression_02(t):
    '''postfix_expression : postfix_expression LPAREN argument_expression_list RPAREN'''
    t[0] = FunctionExpression(t[1], t[3])
    pass

def p_postfix_expression_03(t):
    '''postfix_expression : postfix_expression LPAREN RPAREN'''
    t[0] = FunctionExpression(t[1], ArgumentList())

def p_postfix_expression_04(t):
    '''postfix_expression : postfix_expression LBRACKET expression RBRACKET'''
    t[0] = ArrayExpression(t[1], t[3])

def p_argument_expression_list_01(t):
    '''argument_expression_list : expression'''
    t[0] = ArgumentList(t[1])

def p_argument_expression_list_02(t):
    '''argument_expression_list : argument_expression_list COMMA expression'''
    t[1].add(t[3])
    t[0] = t[1]

def p_unary_expression_01(t):
    '''unary_expression : postfix_expression'''
    t[0] = t[1]

def p_unary_expression_02(t):
    '''unary_expression : MINUS unary_expression'''
    t[0] = _get_calculated(Negative(t[2]))

def p_unary_expression_03(t):
    '''unary_expression : PLUS unary_expression'''
    t[0] = t[2]

def p_unary_expression_03(t):
    '''unary_expression : EXCLAMATION unary_expression'''
    # horrible hack for the '!' operator... Just insert an
    # (expr == 0) into the AST.
    t[0] = _get_calculated(Binop(t[2], Const(0, BaseType('int')), '=='))

def p_unary_expression_04(t):
    '''unary_expression : ASTERISK unary_expression'''
    t[0] = Pointer(t[2])

def p_unary_expression_05(t):
    '''unary_expression : AMPERSAND unary_expression'''
    t[0] = AddrOf(t[2])

def p_mult_expression_01(t):
    '''mult_expression : unary_expression'''
    t[0] = t[1]

def p_mult_expression_02(t):
    '''mult_expression : mult_expression ASTERISK unary_expression
                       | mult_expression DIV unary_expression
                       | mult_expression MODULO unary_expression'''
    t[0] = _get_calculated(Binop(t[1], t[3], t[2]))

def p_additive_expression_01(t):
    '''additive_expression : mult_expression'''
    t[0] = t[1]

def p_additive_expression_02(t):
    '''additive_expression : additive_expression PLUS mult_expression
                           | additive_expression MINUS mult_expression'''
    t[0] = _get_calculated(Binop(t[1], t[3], t[2]))

def p_primary_expression_01(t):
    '''primary_expression : ID'''
    t[0] = Id(t[1], t.lineno(1))

def p_primary_expression_02(t):
    '''primary_expression : INUMBER'''
    t[0] = Const(int(t[1]), BaseType('int'))

def p_primary_expression_03(t):
    '''primary_expression : FNUMBER'''
    t[0] = Const(float(t[1]), BaseType('double'))

def p_primary_expression_04(t):
    '''primary_expression : CHARACTER'''
    t[0] = Const(ord(eval(t[1])), BaseType('char'))

def p_primary_expression_05(t):
    '''primary_expression : string_literal'''
    t[0] = t[1]

def p_primary_expression_06(t):
    '''primary_expression : LPAREN expression RPAREN'''
    t[0] = t[2]

def p_string_literal_01(t):
    '''string_literal : STRING'''
    t[0] = StringLiteral(eval(t[1]))

def p_string_literal_02(t):
    '''string_literal : string_literal STRING'''
    t[1].append_str(eval(t[2]))
    t[0] = t[1]

def p_statement(t):
    '''statement : compound_statement
                 | expression_statement
                 | selection_statement
                 | iteration_statement
                 | jump_statement'''
    t[0] = t[1]

def p_jump_statement_01(t):
    '''jump_statement : RETURN SEMICOLON'''
    t[0] = ReturnStatement(NullNode())

def p_jump_statement_02(t):
    '''jump_statement : RETURN expression SEMICOLON'''
    t[0] = ReturnStatement(t[2])

def p_jump_statement_03(t):
    '''jump_statement : BREAK SEMICOLON'''
    t[0] = BreakStatement()

def p_jump_statement_04(t):
    '''jump_statement : CONTINUE SEMICOLON'''
    t[0] = ContinueStatement()

def p_iteration_statement_01(t):
    '''iteration_statement : WHILE LPAREN expression RPAREN statement'''
    t[0] = WhileLoop(t[3], t[5])

def p_iteration_statement_02(t):
    '''iteration_statement : FOR LPAREN expression_statement expression_statement expression RPAREN statement'''
    t[0] = ForLoop(t[3], t[4], t[5], t[7])

def p_selection_statement_01(t):
    '''selection_statement : IF LPAREN expression RPAREN statement'''
    t[0] = IfStatement(t[3], t[5], NullNode())

def p_selection_statement_02(t):
    '''selection_statement : IF LPAREN expression RPAREN statement ELSE statement'''
    t[0] = IfStatement(t[3], t[5], t[7])

def p_statement_list_02(t):
    '''statement_list : statement'''
    t[0] = StatementList(t[1])

def p_statement_list_03(t):
    '''statement_list : statement_list statement'''
    t[1].add(t[2])
    t[0] = t[1]

def p_empty(t):
    'empty :'
    pass

def p_error(t):
    print("[%s] syntax error:" % t.lineno)
    start = t.lexer.lexdata.rfind("\n", 0, t.lexpos)
    if start == -1 :
        start = 0
    else :
        start += 1
    stop = t.lexer.lexdata.find("\n", t.lexpos)
    head = " " * len("[%s" % t.lineno)
    print(" >" + head + t.lexer.lexdata[start:stop])
    print(" >" + head + (" " * (t.lexpos - start)) + "^")
    raise ParseError()

yacc.yacc(debug=1)

#  ---------------------------------------------------------------
#  End of cparse.py
#  ---------------------------------------------------------------