cvisitors.py 23.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
#  cvisitors.py: modified by Franck Pommereau (2018)

#  ---------------------------------------------------------------
#  cvisitors.py
#
#  Atul Varma
#  Python C Compiler - Visitors
#  $Id: cvisitors.py,v 1.3 2004/05/27 17:51:47 varmaa Exp $
#
#  The Visitor is a pattern outlined in "Design Patterns" by
#  Gamma et al., used here to encapsulate different parts of parsing
#  and compilation into separate classes via a mechanism called
#  double dispatching.
#
#  In this compiler, the yacc grammar rules in cparse.py just create
#  the abstract syntax tree, and visitors do the bulk of parsing
#  and compilation.
#  ---------------------------------------------------------------

# TODO: make it so functions can return void.
# TODO: mark all statements with an 'ignore return value' flag
#       to enable some optimizations if the statement is an
#       expression.
# TODO: move extern, static indicators in functions to their
#       Type object, maybe.
#
# Possible things to do:
#   Add compilation to JVM/python bytecode/z-machine...
#   Implement arrays
#   Pass line numbers to constructors for nodes
#
# Faults so far:
#   * doesn't check for variable initialization before use.
#   * const number ranges aren't being checked.

from . import cparse

class Visitor:
    """The base visitor class.  This is an abstract base class."""

    def __init__(self):
        self.warnings = 0
        self.errors = 0

    def _visitList(self, list):
        """Visit a list of nodes.  'list' should be an actual list,
        not a cparse.NodeList object."""

        last = None
        for i in list:
            last = i.accept(self)
        return last

    def visit(self, node):
        """Visits the given node by telling the node to call the
        visitor's class-specific visitor method for that node's
        class (i.e., double dispatching)."""

        return node.accept(self)

    def warning(self, str):
        """Output a non-fatal compilation warning."""

        print("warning: %s" % str)
        self.warnings += 1

    def error(self, str):
        """Output a fatal compilation error."""

        print("error: %s" % str)
        self.errors += 1

    def has_errors(self):
        """Returns whether the visitor has encountered any
        errors."""

        return self.errors > 0

#  ---------------------------------------------------------------
#  ABSTRACT SYNTAX TREE PRINTER (for debugging)
#  ---------------------------------------------------------------

class ASTPrinterVisitor(Visitor):
    """Simple visitor that outputs a textual representation of
    the abstract syntax tree, for debugging purposes, to an
    output file."""

    def __init__(self, ast_file, indent_amt=2):
        self.ast_file = ast_file
        Visitor.__init__(self)
        self._indent = 0
        self._indent_amt = indent_amt

    def indent(self):
        self._indent += self._indent_amt

    def unindent(self):
        self._indent -= self._indent_amt

    def p(self, str):
        self.ast_file.write(
            (' ' * (self._indent_amt * self._indent) ) + str + "\n" )

    def pNodeInfo(self, node):
        # Print out the name of the node's class.
        self.p('+ ' + node.__class__.__name__)

        # If the node has a type associated with it,
        # print the string of the type.
        if hasattr(node, "type"):
            self.p("  Type-string: %s" % node.type.get_string())

        # Find all attributes of the node that are ints or
        # strings and aren't 'private' (i.e., don't begin with
        # '_'), and print their values.
        for key in dir(node):
            if key[0] == '_':
                continue
            val = getattr(node, key, None)
            if (isinstance(val, str) or
                isinstance(val, int)):
                self.p("  %s: %s" % (key, str(val)))

    def pSubnodeInfo(self, subnode, label):
        if not subnode.is_null():
            self.p("  %s:" % label)
            self.indent()
            subnode.accept(self)
            self.unindent()

    def vNullNode(self, node):
        self.pNodeInfo(node)

    def vArrayExpression(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.expr, "Expression")
        self.pSubnodeInfo(node.index, "Index")

    def vStringLiteral(self, node):
        self.pNodeInfo(node)
        self.p('  Value: "%s"' % node.get_sanitized_str())

    def vId(self, node):
        self.pNodeInfo(node)

    def vUnaryop(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.expr, "Expression")

    def vFunctionExpression(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.function, "Function")
        self.pSubnodeInfo(node.arglist, "Arguments")

    def vConst(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.type, "Type")

    def vBinop(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.left, "Left operand")
        self.pSubnodeInfo(node.right, "Right operand")

    def vNodeList(self, node):
        self.pNodeInfo(node)
        self.indent()
        self._visitList(node.nodes)
        self.unindent()

    def vCompoundStatement(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.declaration_list, "Declaration list")
        self.pSubnodeInfo(node.statement_list, "Statement list")

    def vBaseType(self, node):
        self.pNodeInfo(node)

    def vFunctionType(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.params, "Parameters:")
        self.pSubnodeInfo(node.child, "Child:")

    def vPointerType(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.child, "Child:")

    def vDeclaration(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.type, "Type")

    def vReturnStatement(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.expr, "Expression")

    def vFunctionDefn(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.type, "Type")
        self.pSubnodeInfo(node.body, "Body")

    def vIfStatement(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.expr, "Expression")
        self.pSubnodeInfo(node.then_stmt, "Then statement")
        self.pSubnodeInfo(node.else_stmt, "Else statement")

    def vWhileLoop(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.expr, "Expression")
        self.pSubnodeInfo(node.stmt, "Statement")

    def vForLoop(self, node):
        self.pNodeInfo(node)
        self.pSubnodeInfo(node.begin_stmt, "Begin statement")
        self.pSubnodeInfo(node.expr, "Test expression")
        self.pSubnodeInfo(node.end_stmt, "End statement")
        self.pSubnodeInfo(node.stmt, "Statement")

#  ---------------------------------------------------------------
#  SYMBOL TABLE GENERATION
#  ---------------------------------------------------------------

class Symtab:
    """A symbol table.  This is a simple object that just keeps a
    hashtable of symbol names and the Declaration or FunctionDefn
    nodes that they refer to.

    There is a separate symbol table for each code element that
    has its own scope (for instance, each compound statement will
    have its own symbol table).  As a result, symbol tables can
    be nested if the code elements are nested, and symbol table
    lookups will recurse upwards through parents to represent
    lexical scoping rules."""

    class SymbolDefinedError(Exception):
        """Exception raised when the code tries to add a symbol
        to a table where the symbol has already been defined.
        Note that 'defined' is used in the C sense here--i.e.,
        'space has been allocated for the symbol', as opposed
        to a declaration."""

        pass

    class SymbolConflictError(Exception):
        """Exception raised when the code tries to add a
        symbol to a tamble where the symbol already exists
        and its type differs from the previously existing
        one."""

        pass

    def __init__(self, parent=None):
        """Creates an empty symbol table with the given
        parent symbol table."""

        self.entries = {}
        self.parent = parent
        if self.parent != None:
            self.parent.children.append(self)
        self.children = []

    def add(self, name, value):
        """Adds a symbol with the given value to the symbol table.
        The value is usually an AST node that represents the
        declaration or definition of a function/variable (e.g.,
        Declaration or FunctionDefn)."""

        if name in self.entries:
            if not self.entries[name].extern:
                raise Symtab.SymbolDefinedError()
            elif self.entries[name].type.get_string() != \
                 value.type.get_string():
                raise Symtab.SymbolConflictError()
        self.entries[name] = value

    def get(self, name):
        """Retrieves the symbol with the given name from the symbol
        table, recursing upwards through parent symbol tables if it is
        not found in the current one."""

        if name in self.entries:
            return self.entries[name]
        else:
            if self.parent != None:
                return self.parent.get(name)
            else:
                return None

class SymtabVisitor(Visitor):
    """Visitor that creates and attaches symbol tables to the AST."""

    def push_symtab(self, node):
        """Pushes a new symbol table onto the visitor's symbol table
        stack and attaches this symbol table to the given node.  This
        is used whenever a new lexical scope is encountered, so the
        node is usually a CompoundStatement object."""

        self.curr_symtab = Symtab(self.curr_symtab)
        node.symtab = self.curr_symtab

    def pop_symtab(self):
        """Pops a symbol table off the visitor's symbol table stack.
        This is used whenever a new lexical scope is exited."""

        self.curr_symtab = self.curr_symtab.parent

    def vNode(self, node):
        pass

    def vArrayExpression(self, node):
        node.expr.accept(self)
        node.index.accept(self)

    def vFunctionExpression(self, node):
        node.function.accept(self)
        node.arglist.accept(self)

    def vId(self, node):
        symbol = self.curr_symtab.get(node.name)
        if symbol != None:
            node.symbol = symbol
            node.symbol.is_used = 1
            node.set_has_address()
        else:
            self.error("Line %d: Unknown identifier '%s'." % (node.lineno, node.name))

    def vUnaryop(self, node):
        node.expr.accept(self)

    def vBinop(self, node):
        node.left.accept(self)
        node.right.accept(self)

    def vNodeList(self, node):
        self._visitList(node.nodes)

    def vParamList(self, node):
        # Assign a number to each parameter.  This will later be
        # useful for the code generation phase.
        #
        # TODO: might be best to just move this to the code
        # generation phase, since this doesn't have anything to
        # do with symbol table generation.
        for param_num, param in enumerate(node.nodes):
            param.accept(self)
            param.param_num = param_num

    def vTranslationUnit(self, node):
        self.root_symtab = Symtab()
        self.curr_symtab = self.root_symtab
        self.vNodeList(node)
        node.symtab = self.root_symtab

    def vCompoundStatement(self, node):
        self.push_symtab(node)
        node.declaration_list.accept(self)
        node.statement_list.accept(self)
        self.pop_symtab()

    def _add_symbol(self, node):
        """Attempts to add a symbol for the given node to the current
        symbol table, catching any exceptions that occur and printing
        errors if necessary."""

        try:
            self.curr_symtab.add(node.name, node)
        except Symtab.SymbolDefinedError:
            self.error("Symbol '%s' already defined." % node.name)
        except Symtab.SymbolConflictError:
            self.error("Symbol '%s' has multiple differing declarations." % node.name)

    def vDeclaration(self, node):
        self._add_symbol(node)

    def vReturnStatement(self, node):
        node.expr.accept(self)

    def vFunctionType(self, node):
        node.params.accept(self)

    def vFunctionDefn(self, node):
        self._add_symbol(node)
        self.push_symtab(node)
        node.type.accept(self)
        node.body.accept(self)
        self.pop_symtab()

    def vIfStatement(self, node):
        node.expr.accept(self)
        node.then_stmt.accept(self)
        node.else_stmt.accept(self)

    def vWhileLoop(self, node):
        node.expr.accept(self)
        node.stmt.accept(self)

    def vForLoop(self, node):
        node.begin_stmt.accept(self)
        node.expr.accept(self)
        node.end_stmt.accept(self)
        node.stmt.accept(self)

#  ---------------------------------------------------------------
#  TYPE CHECKING
#  ---------------------------------------------------------------

class TypeCheckVisitor(Visitor):
    """Visitor that performs type checking on the AST, attaching a
    Type object subclass to every eligible node and making sure these
    types don't conflict."""

    def _process_conditional(self, expr):
        """Does simple type checking for an expression that is
        supposed to be the expression for a conditional
        statement (e.g., the conditional clause of an if/then
        statement or a loop)."""

        if expr.type.get_outer_string() not in ['int', 'char']:
            self.error("Conditional expression doesn't evaluate to an int/char/etc.")

    def _coerce_consts(self, var1, var2):
        """Looks at two typed terminals to see if one of them
        is a constant integral.  If it is, then coerce it to
        the type of the other terminal.

        Note that both terminals cannot be constant integrals, or else
        they would have already been reduced to one node by the node's
        calculate() method in the parsing stage."""

        if var1.is_const():
            self._coerce_const(var1, var2.type)
        elif var2.is_const():
            self._coerce_const(var2, var1.type)

    def _coerce_const(self, var, type):
        """If the given typed terminal is a constant, coerces it to
         the given type."""

        if var.is_const() and type.get_string() in ['int', 'char']:
            var.type = type

    def _check_const_range(self, var, type):
        """Checks the given integral constant to make sure its value
        is within the bounds of the given type."""

        val = var.value
        type_str = type.get_outside_string()
        # TODO: implement this!
        if type_str == 'char':
            pass
        elif type_str == 'int':
            pass

    def _compare_types(self, name_str, from_type, to_type, raise_errors=1, node=None):
        """Compares the two types to see if it's possible to perform a
        binary operation on them.  If it is not, then the appropriate
        errors/warnings are raised, unless raise_errors is set to
        0."""

        WARNING = 1
        ERROR = 2
        conflict = 0
        from_str = from_type.get_string()
        to_str = to_type.get_string()
        if (from_str != to_str):
            if from_str == 'char':
                if to_str == 'int':
                    pass
                else:
                    conflict = ERROR
            elif from_str == 'int':
                if to_str == 'char':
                    conflict = WARNING
                else:
                    conflict = ERROR
            elif from_str.startswith("pointer(") and to_str.startswith("pointer(") :
                conflict = WARNING
            else:
                conflict = ERROR
        if not raise_errors:
            return conflict
        if conflict == WARNING:
            self.warning("%s%s: Conversion from %s to %s may result in data loss."
                         % ("[%s] " % node.loc() if node else "",
                            name_str, from_str, to_str))
        elif conflict == ERROR:
            self.error("%s%s: Cannot convert from %s to %s."
                       % ("[%s] " % node.loc() if node else "",
                          name_str, from_str, to_str))

    def vNode(self, node):
        pass

    def vId(self, node):
        node.type = node.symbol.type

    def vNegative(self, node):
        node.expr.accept(self)
        node.type = node.expr.type
        # TODO: check to make sure expr is a signed type?

    def vAddrOf(self, node):
        node.expr.accept(self)
        if not node.expr.has_address():
            self.error("Address-of (&) target has no address!")
        else:
            node.expr.output_addr = 1
            node.type = cparse.PointerType(node.expr.type)

    def vPointer(self, node):
        node.expr.accept(self)
        if node.expr.type.get_outer_string() == 'pointer':
            node.type = node.expr.type.child
            node.set_has_address()
        else:
            self.error("Pointer dereference (*) target is not a pointer!")

    def vBinop(self, node):
        node.left.accept(self)
        node.right.accept(self)
        if node.op in cparse.Binop.ASSIGN_OPS:
            if not node.left.has_address():
                self.error("Invalid lvalue: not an address!")
            node.left.output_addr = 1
            self._coerce_const(node.right, node.left.type)
            # TODO: re-implement this!
            # elif node.left.symbol.is_constant:
            #    self.error("Invalid lvalue: lvalue is constant!")
            self._compare_types("Assignment", node.right.type, node.left.type, node=node)
            node.right.coerce_to_type = node.left.type
            node.type = node.left.type
        else:
            # TODO: not sure if this results in the ANSI C
            # specification for binary operand type coercion.

            self._coerce_consts(node.left, node.right)
            left_conflicts = self._compare_types("", node.right.type, node.left.type,
                                                 raise_errors=0, node=node)
            right_conflicts = self._compare_types("", node.left.type, node.right.type,
                                                  raise_errors=0, node=node)
            if left_conflicts < right_conflicts:
                from_node = node.right
                to_node = node.left
            else:
                from_node = node.left
                to_node = node.right
            self._compare_types("Binop '%s'" % node.op, from_node.type, to_node.type,
                                node=node)
            from_node.coerce_to_type = to_node.type
            to_node.coerce_to_type = to_node.type
            node.type = to_node.type

    def vNodeList(self, node):
        self._visitList(node.nodes)

    def vCompoundStatement(self, node):
        node.statement_list.accept(self)

    def vReturnStatement(self, node):
        node.expr.accept(self)
        return_type = self.curr_func.type.get_return_type()
        self._coerce_const(node.expr, return_type)
        self._compare_types("Return expression", node.expr.type, return_type, node=node)
        node.expr.coerce_to_type = return_type

    def vArrayExpression(self, node):
        node.expr.accept(self)
        node.index.accept(self)
        if node.index.type.get_outer_string() not in ['int', 'char']:
            self.error("Array index is not an int or char!")
        elif node.expr.type.get_outer_string() != 'pointer':
            self.error("Array expression is not a pointer!")
        else:
            node.type = node.expr.type.child
            node.set_has_address()

    def vFunctionExpression(self, node):
        node.function.accept(self)
        if not node.function.type.is_function():
            self.error("Target of function expression is not a function!")
        node.type = node.function.symbol.type.get_return_type()
        node.arglist.accept(self)
        params = node.function.symbol.type.get_params()
        num_args = len(node.arglist.nodes)
        num_params = len(params.nodes)
        if (not params.has_ellipsis) and (num_args > num_params):
            self.error("Too many arguments passed to function.")
        elif num_args < num_params:
            self.error("Too few arguments passed to function.")
        for arg, param in zip(node.arglist.nodes, params.nodes):
            self._coerce_const(arg, param.type)
            self._compare_types("Function call argument", arg.type, param.type,
                                node=node)
            arg.coerce_to_type = param.type
        # If this function takes a variable number of args and
        # we've got more args than required parameters, we need
        # to set some of the extra arguments' field(s) properly.
        if (params.has_ellipsis) and (num_args > num_params):
            for arg in node.arglist.nodes[num_params:]:
                arg.coerce_to_type = arg.type

    def vFunctionDefn(self, node):
        self.curr_func = node
        node.body.accept(self)

    def vIfStatement(self, node):
        node.expr.accept(self)

        self._process_conditional(node.expr)
        node.then_stmt.accept(self)
        node.else_stmt.accept(self)

    def vWhileLoop(self, node):
        node.expr.accept(self)
        self._process_conditional(node.expr)
        node.stmt.accept(self)

    def vForLoop(self, node):
        node.begin_stmt.accept(self)
        node.expr.accept(self)
        self._process_conditional(node.expr)
        node.end_stmt.accept(self)
        node.stmt.accept(self)

#  ---------------------------------------------------------------
#  FLOW CONTROL
#  ---------------------------------------------------------------

class FlowControlVisitor(Visitor):
    """Performs flow control checking on the AST.  This makes sure
    that functions return properly through all branches, that
    break/continue statements are only present within loops, and so
    forth."""

    def vNode(self, node):
        node.has_return_stmt = 0

    def vStatementList(self, node):
        node.has_return_stmt = 0
        for stmt in node.nodes:
            if node.has_return_stmt:
                self.warning("Function %s has at least one unreachable statement." % self.curr_func.name)
            stmt.accept(self)
            if stmt.has_return_stmt:
                node.has_return_stmt = 1

    def vTranslationUnit(self, node):
        self._visitList(node.nodes)

    def vWhileLoop(self, node):
        old_in_loop = self.in_loop
        self.in_loop = 1
        node.stmt.accept(self)
        self.in_loop = old_in_loop
        node.has_return_stmt = node.stmt.has_return_stmt

    def vForLoop(self, node):
        self.vWhileLoop(node)

    def vBreakStatement(self, node):
        node.has_return_stmt = 0
        if not self.in_loop:
            self.error("Break statement outside of loop.")

    def vContinueStatement(self, node):
        node.has_return_stmt = 0
        if not self.in_loop:
            self.error("Continue statement outside of loop.")

    def vIfStatement(self, node):
        node.then_stmt.accept(self)
        node.else_stmt.accept(self)
        if node.then_stmt.has_return_stmt and node.else_stmt.has_return_stmt:
            node.has_return_stmt = 1
        else:
            node.has_return_stmt = 0

    def vFunctionDefn(self, node):
        self.curr_func = node
        self.in_loop = 0
        node.body.accept(self)
        if not node.body.has_return_stmt:
            self.warning("Function %s doesn't return through all branches." % node.name)

    def vReturnStatement(self, node):
        node.has_return_stmt = 1

    def vCompoundStatement(self, node):
        node.statement_list.accept(self)
        node.has_return_stmt = node.statement_list.has_return_stmt

#  ---------------------------------------------------------------
#  End of cvisitors.py
#  ---------------------------------------------------------------