checker.py 14.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
import netverifcar
import libsverifcar
import time

#______________________PROPOSITIONS & HEURISTICS______________________

#___________Arrival Order___________

def arrival_i_before_j(state,i,j) :
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.id == i :
			pi = v.posX
		if v.id == j :
			pj = v.posX
	if pi == libsverifcar.LengthX and pi > pj :
		return True
	return False

#Heuristic for arrival_i_before_j
def distance_i_j(state,i,j) :
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.id == i :
			pi = v.posX
		if v.id == j :
			pj = v.posX
	return pi - pj

#Negation of arrival_i_before_j
def not_arrival_i_before_j(state,i,j) :
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.id == i :
			pi = v.posX
		if v.id == j :
			pj = v.posX
	if pi == libsverifcar.LengthX and pi > pj :
		return False
	return True

#___________Travel Time___________

#Travel time > n
def travel_time_i_sup_n(state,i,n) :
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.id == i and v.posX == libsverifcar.LengthX :	
			return v.nb_updates > n
	return False

#Heuristic for travel_time_i_sup_n
def hestimated_travel_time(state,i,n) :#n for compilation
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.id == i and v.nb_updates > 0:	
			return v.nb_updates+(((libsverifcar.LengthX-v.posX)/v.speed)*10)
	return 0

#Travel time < n
def travel_time_i_inf_n(state,i,n) :
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.id == i and v.posX == libsverifcar.LengthX :	
			return v.nb_updates < n
	return False

#Heuristic for travel_time_i_inf_n
def hestimated_travel_time_inv(state,i,n) :#n for compilation
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.id == i and v.nb_updates > 0:	
			return -(v.nb_updates+(((libsverifcar.LengthX-v.posX)/v.speed)*10))
	return 0

#___________Time-to-collision___________

#TTC < n
def ttc_i_j_inf_n(state,i,j,n) :
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.id == i :
			vi = v
			if v.posX == libsverifcar.LengthX :
				return False
		if v.id == j :
			vj = v
			if v.posX == libsverifcar.LengthX :
				return False
	return netverifcar.time_to_collision(vi, vj) < n

#Heuristic for ttc_i_j_inf_n
def time_to_overtake_i_j_inv(state,i,j,n) :#n for compilation
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.id == i :
			vi = v
			if v.posX == libsverifcar.LengthX :
				return -100*libsverifcar.scale
		if v.id == j :
			vj = v
			if v.posX == libsverifcar.LengthX :
				return -100*libsverifcar.scale
	if vi.posX > vj.posX :
		if vi.speed < vj.speed :
			return -(vi.posX-vj.posX)/(vj.speed-vi.speed)
		else :
			return -100*libsverifcar.scale
	elif vj.posX > vi.posX :
		if vj.speed < vi.speed :
			return -(vj.posX-vi.posX)/(vi.speed-vj.speed)
		else :
			return -100*libsverifcar.scale
	else :
		return 0
#TTC > n
def ttc_i_j_sup_n(state,i,j,n) :
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.id == i :
			vi = v
			if v.posX == libsverifcar.LengthX :
				return True
		if v.id == j :
			vj = v
			if v.posX == libsverifcar.LengthX :
				return True
	return netverifcar.time_to_collision(vi, vj) > n

#Heuristic for ttc_i_j_inf_n
def time_to_overtake_i_j(state,i,j,n) :#n for compilation
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.id == i :
			vi = v
			if v.posX == libsverifcar.LengthX :
				return 100*libsverifcar.scale
		if v.id == j :
			vj = v
			if v.posX == libsverifcar.LengthX :
				return 100*libsverifcar.scale
	if vi.posX > vj.posX :
		if vi.speed < vj.speed :
			return (vi.posX-vj.posX)/(vj.speed-vi.speed)
		else :
			return 100*libsverifcar.scale
	elif vj.posX > vi.posX :
		if vj.speed < vi.speed :
			return (vj.posX-vi.posX)/(vi.speed-vj.speed)
		else :
			return 100*libsverifcar.scale
	else :
		return 0

#______________________EXPLORATION ALGORITHMS______________________

#___________Sub-functions___________

def strong_equal(state1,state2) :
	v1 = list(state1["vehicles"].items())
	v2 = list(state2["vehicles"].items())
	for i in range(len(v1)):
		if not v1[i].strong_equal(v2[i]) :
			return False
	return True	

def final_state(state) :
	vehicles = list(state["vehicles"].items())
	for v in vehicles :
		if v.posX != libsverifcar.LengthX :
			return False
	return True

def next_border(init) :
	finals = set()
	exploring = set()
	exploring.add(init)
	while exploring :
		for i in exploring.copy() :
			itersucc = list(netverifcar.itersucc(i))
			exploring.remove(i)
			for s in itersucc :
				marking = i-s[2]+s[3]
				if s[0] == 'update' :
				#if s[0] == 'signal' :
					finals.add(marking)
				else :
					exploring.add(marking)
	return finals

def next_border_set(init_set) :
	finals = []
	exploring = init_set
	while exploring :
		for i in exploring.copy() :
			itersucc = list(netverifcar.itersucc(i))
			exploring.remove(i)
			for s in itersucc :
				marking = i-s[2]+s[3]
				if s[0] == 'update' :
				#if s[0] == 'signal' :
					state_added = False
					for aset in finals :
						if strong_equal(aset.copy().pop(),marking) :
							aset.add(marking)
							state_added = True
					if not state_added :
						finals.append({marking})
				else :
					exploring.add(marking)
	return finals

#___________Full Exploration Algorithms___________

#Standard width first exploration
def basic_width() :
	start_time = time.time()
	exploring = [netverifcar.init()]
	finals = set()
	state_counter = 0
	while exploring :
		#print(len(exploring))
		succ = netverifcar.succ(exploring.pop(0))
		state_counter = state_counter + 1
		for s in succ :
			if final_state(s) :
				finals.add(s)
				print("--- %s seconds ---" % (time.time() - start_time))
			elif s not in exploring :
				exploring.append(s)
			else :
				print("Found interliving")
	print("Exploration is over. Number of states explored : ", state_counter)
	print("--- %s seconds ---" % (time.time() - start_time))
	return finals

#Standard depth first exploration (no results to be expected)
def basic_depth() :
	start_time = time.time()
	exploring = [netverifcar.init()]
	finals = set()
	state_counter = 0
	while exploring :
		succ = netverifcar.succ(exploring.pop())
		state_counter = state_counter + 1
		for s in succ :
			if final_state(s) :
				finals.add(s)
				print(len(exploring))
				print("--- %s seconds ---" % (time.time() - start_time))
			else :
				exploring.append(s)
	print("Exploration is over. Number of states explored : ", state_counter)
	print("--- %s seconds ---" % (time.time() - start_time))
	return finals

#Layered depth first exploration without weak variables
def strong_explore_depth() :
	start_time = time.time()
	exploring = [netverifcar.init()]
	finals = set()
	state_counter = 0
	while exploring :
		#print(len(exploring))
		succ_set = next_border(exploring.pop())
		state_counter = state_counter + 1
		for s in succ_set :
			if final_state(s) :
				finals.add(s)
				print(len(exploring))
				print("--- %s seconds ---" % (time.time() - start_time))
			else :
				exploring.append(s)
	print("Exploration is over. Number of states explored : ", state_counter)
	print("--- %s seconds ---" % (time.time() - start_time))
	return finals

#Layered depth first exploration with weak variables
def explore_depth() :
	start_time = time.time()
	exploring = [{netverifcar.init()}]
	finals = set()
	state_counter = 0
	final_counter = 0
	while exploring :
		#print(len(exploring))
		succ_set = next_border_set(exploring.pop())
		state_counter = state_counter + 1
		for aset in succ_set :
			explore_set = set()
			for s in aset :
				if final_state(s) :
					finals.add(s)
					final_counter = final_counter + 1
					print("Found %s th final state" % (final_counter))
					print("--- %s seconds ---" % (time.time() - start_time))
				else :
					explore_set.add(s)
			if explore_set :
				exploring.append(explore_set)
	print("Exploration is over. Number of states explored : ", state_counter)
	print("--- %s seconds ---" % (time.time() - start_time))
	return finals

#Width first exploration for paths extrema of a set of indicators (any number of indicator can be added)
def bounds_value(value1,value1_args,value2,value2_args,value3,value3_args) :
	start_time = time.time()
	init = netverifcar.init()
	v1 = value1(init,*value1_args)
	v2 = value2(init,*value2_args)
	v3 = value3(init,*value3_args)
	exploring = [(init,v1,v1,v2,v2,v3,v3)]
	finals = set()
	state_counter = 0
	while exploring :
		#print(len(exploring))
		explored = exploring.pop(0)
		succ = next_border(explored[0])
		state_counter = state_counter + 1
		for s in succ :
			state_value1 = value1(s,*value1_args)
			min_path_value1 = min(explored[1],state_value1)
			max_path_value1 = max(explored[2],state_value1)
			state_value2 = value2(s,*value2_args)
			min_path_value2 = min(explored[3],state_value2)
			max_path_value2 = max(explored[4],state_value2)
			state_value3 = value3(s,*value3_args)
			min_path_value3 = min(explored[5],state_value3)
			max_path_value3 = max(explored[6],state_value3)
			if final_state(s) :
				finals.add((s,min_path_value1,max_path_value1,min_path_value2,max_path_value2,min_path_value3,max_path_value3))
			elif (s,min_path_value1,max_path_value1,min_path_value2,max_path_value2,min_path_value3,max_path_value3) not in exploring :
				exploring.append((s,min_path_value1,max_path_value1,min_path_value2,max_path_value2,min_path_value3,max_path_value3))
			else :
				print("Found interliving")
	print("--- %s seconds ---" % (time.time() - start_time))
	print("Exploration is over. Number of states explored : ", state_counter)
	return finals

#___________Reachability Algorithms___________

#EF p in depth first with heuristic
def exist_state(prop,heuristic,func_args) :
	start_time = time.time()
	exploring = [({netverifcar.init()},heuristic(netverifcar.init(),*func_args))]
	state_counter = 0
	while exploring :
		#print(len(exploring))
		succ_set = next_border_set(exploring.pop()[0])
		state_counter = state_counter + 1
		for s in succ_set :
			state=s.copy().pop()
			if prop(state,*func_args) :
				print("Exploration is over. Number of states explored : ", state_counter)
				print("--- %s seconds ---" % (time.time() - start_time))
				print(s)
				return True
			elif not final_state(state) :
				weight = heuristic(state,*func_args)
				index = len(exploring)
				if index == 0 :
					exploring.append((s,weight))
				elif exploring[0][1] > weight :
					exploring.insert(0,(s,weight))
				else :
					while exploring[index-1][1] > weight and index > 1 :#to improve with dichotomy
						index = index - 1
					exploring.insert(index,(s,weight))
	print("Exploration is over. Number of states explored : ", state_counter)
	print("--- %s seconds ---" % (time.time() - start_time))
	return False

#EF p in width first 
def width_exist(func,func_args) :
	start_time = time.time()
	exploring = [netverifcar.init()]
	state_counter = 0
	while exploring :
		#print(len(exploring))
		succ_set = next_border(exploring.pop(0))
		state_counter = state_counter + 1
		for s in succ_set :
			if func(s,*func_args) :
				print("Exploration is over. Number of states explored : ", state_counter)
				print("--- %s seconds ---" % (time.time() - start_time))
				print(s)
				return True
			if s not in exploring and not final_state(s):
				exploring.append(s)
	print("Exploration is over. Number of states explored : ", state_counter)
	print("--- %s seconds ---" % (time.time() - start_time))
	return False

#EG p in depth first with heuristic
def exist_path(prop,heuristic,func_args) :
	start_time = time.time()
	exploring = [({netverifcar.init()},heuristic(netverifcar.init(),*func_args))]
	state_counter = 0
	while exploring :
		#print(len(exploring))
		succ_set = next_border_set(exploring.pop()[0])
		state_counter = state_counter + 1
		for s in succ_set :
			state=s.copy().pop()
			if prop(state,*func_args) :
				if final_state(state) :
					print("Exploration is over. Number of states explored : ", state_counter)
					print("--- %s seconds ---" % (time.time() - start_time))
					print(s)
					return True
				else :
					weight = heuristic(state,*func_args)
					index = len(exploring)
					if index == 0 :
						exploring.append((s,weight))
					elif exploring[0][1] > weight :
						exploring.insert(0,(s,weight))
					else :
						while exploring[index-1][1] > weight and index > 1 :#to improve with dichotomy
							index = index - 1
						exploring.insert(index,(s,weight))
	print("Exploration is over. Number of states explored : ", state_counter)
	print("--- %s seconds ---" % (time.time() - start_time))
	return False

#EG p in width first
def width_path(func,func_args) :
	start_time = time.time()
	exploring = [netverifcar.init()]
	state_counter = 0
	while exploring :
		#print(len(exploring))
		succ_set = next_border(exploring.pop(0))
		state_counter = state_counter + 1
		for s in succ_set :
			if func(s,*func_args) :
				if final_state(s) :
					print("Exploration is over. Number of states explored : ", state_counter)
					print("--- %s seconds ---" % (time.time() - start_time))
					return True
				elif s not in exploring :
					exploring.append(s)
				else :
					print("Found interliving")
	print("Exploration is over. Number of states explored : ", state_counter)
	print("--- %s seconds ---" % (time.time() - start_time))
	return False

#EF (p and EF q) in depth first
def EFpEFq(prop1,prop1_args,prop2,prop2_args) :
	start_time = time.time()
	exploring = [({netverifcar.init()},False)]
	state_counter = 0
	while exploring :
		#print(len(exploring))
		main_succ = exploring.pop()
		succ_set = next_border_set(main_succ[0])
		state_counter = state_counter + 1
		for s in succ_set :
			state=s.copy().pop()
			mark = False
			if prop1(state,*prop1_args) or main_succ[1] :
				mark = True
			if mark and prop2(state,*prop2_args) :
				print("Exploration is over. Number of states explored : ", state_counter)
				print("--- %s seconds ---" % (time.time() - start_time))
				print(s)
				return True
			elif not final_state(state) :
				exploring.append((s,mark))
	print("Exploration is over. Number of states explored : ", state_counter)
	print("--- %s seconds ---" % (time.time() - start_time))
	return False

#EF (p and EG q) in depth first
def EFpEGq(prop1,prop1_args,prop2,prop2_args) :
	start_time = time.time()
	exploring = [({netverifcar.init()},False)]
	state_counter = 0
	while exploring :
		#print(len(exploring))
		main_succ = exploring.pop()
		succ_set = next_border_set(main_succ[0])
		state_counter = state_counter + 1
		for s in succ_set :
			state=s.copy().pop()
			mark = False
			if (prop1(state,*prop1_args) or main_succ[1]) and prop2(state,*prop2_args) :
				mark = True
			if mark and final_state(state) :
				print("Exploration is over. Number of states explored : ", state_counter)
				print("--- %s seconds ---" % (time.time() - start_time))
				print(s)
				return True
			elif not final_state(state) :
				exploring.append((s,mark))
	print("Exploration is over. Number of states explored : ", state_counter)
	print("--- %s seconds ---" % (time.time() - start_time))
	return False