RNAnet.py
158 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
#!/usr/bin/python3
# check Python version before everything
import platform
a = ["3.8", platform.python_version()]
a.sort()
if a[0] != "3.8":
print(f"Python is too old: {platform.python_version()}")
print("Please use version 3.8 or newer.")
exit(1)
import Bio.PDB as pdb
import concurrent.futures
import getopt
import gzip
import io
import json
import numpy as np
import os
import pandas as pd
import pickle
import psutil
import re
import requests
import signal
import sqlalchemy
import sqlite3
import subprocess
import sys
import time
import traceback
import warnings
from functools import partial, wraps
from multiprocessing import Pool, Manager, Value
from time import sleep
from tqdm import tqdm
from setproctitle import setproctitle
from Bio import AlignIO, SeqIO
from Bio.SeqIO.FastaIO import FastaIterator, SimpleFastaParser
from Bio.Seq import MutableSeq
from Bio.SeqRecord import SeqRecord
from Bio.Align import MultipleSeqAlignment
from collections import defaultdict
from Bio.PDB.PDBIO import Select
runDir = os.getcwd()
def trace_unhandled_exceptions(func):
"""
Captures exceptions even in parallel sections of the code and child processes,
and throws logs in red to stderr and to errors.txt.
Should be defined before the classes that use it.
"""
@wraps(func)
def wrapped_func(*args, **kwargs):
try:
return func(*args, **kwargs)
except:
s = traceback.format_exc()
if not "KeyboardInterrupt" in s:
with open(runDir + "/errors.txt", "a") as f:
f.write("Exception in "+func.__name__+"\n")
f.write(s)
f.write("\n\n")
warn('Exception in '+func.__name__, error=True)
print(s)
return wrapped_func
pd.set_option('display.max_rows', None)
sqlite3.enable_callback_tracebacks(True)
sqlite3.register_adapter(np.int64, lambda val: int(val)) # Tell Sqlite what to do with <class numpy.int64> objects ---> convert to int
sqlite3.register_adapter(np.float64, lambda val: float(val)) # Tell Sqlite what to do with <class numpy.float64> objects ---> convert to float
n_launched = Value('i', 0)
n_finished = Value('i', 0)
n_skipped = Value('i', 0)
path_to_3D_data = "tobedefinedbyoptions"
path_to_seq_data = "tobedefinedbyoptions"
python_executable = "python"+".".join(platform.python_version().split('.')[:2]) # Cuts python3.8.1 into python3.8 for example.
validsymb = '\U00002705'
warnsymb = '\U000026A0'
errsymb = '\U0000274C'
LSU_set = {"RF00002", "RF02540", "RF02541", "RF02543", "RF02546"} # From Rfam CLAN 00112
SSU_set = {"RF00177", "RF02542", "RF02545", "RF01959", "RF01960"} # From Rfam CLAN 00111
no_nts_set = set()
weird_mappings = set()
class MutableFastaIterator(FastaIterator):
"""
Same as Biopython's FastaIterator, but uses Bio.Seq.MutableSeq objects instead of Bio.Seq.Seq.
"""
def iterate(self, handle):
"""Parse the file and generate SeqRecord objects."""
title2ids = self.title2ids
if title2ids:
for title, sequence in SimpleFastaParser(handle):
id, name, descr = title2ids(title)
yield SeqRecord(MutableSeq(sequence), id=id, name=name, description=descr)
else:
for title, sequence in SimpleFastaParser(handle):
try:
first_word = title.split(None, 1)[0]
except IndexError:
assert not title, repr(title)
first_word = ""
yield SeqRecord(MutableSeq(sequence), id=first_word, name=first_word, description=title)
class SelectivePortionSelector(object):
"""Class passed to MMCIFIO to select some chain portions in an MMCIF file.
Validates every chain, residue, nucleotide, to say if it is in the selection or not.
The primary use is to select the portion of a chain which is mapped to a family.
"""
def __init__(self, model_id, chain_id, valid_resnums, khetatm):
self.chain_id = chain_id
self.resnums = valid_resnums # list of strings, that are mostly ints
self.pdb_model_id = model_id
self.hydrogen_regex = re.compile("[123 ]*H.*")
self.keep_hetatm = khetatm
def accept_model(self, model):
return int(model.get_id() == self.pdb_model_id)
def accept_chain(self, chain):
return int(chain.get_id() == self.chain_id)
def accept_residue(self, residue):
hetatm_flag, resseq, icode = residue.get_id()
# Refuse waters and magnesium ions
if hetatm_flag in ["W", "H_MG"]:
return int(self.keep_hetatm)
# Accept the residue if it is in the right interval:
if icode == " " and len(self.resnums):
return int(str(resseq) in self.resnums)
elif icode != " " and len(self.resnums):
return int(str(resseq)+icode in self.resnums)
else: # len(resnum) == 0, we don't use mappings (--no-homology option)
return 1
def accept_atom(self, atom):
# Refuse hydrogens
if self.hydrogen_regex.match(atom.get_id()):
return 0
# Refuse the first two phosohate groups when residue is a triphosphate
if atom.get_id() in ['O3B', 'O2B', 'O1B', 'PB', 'O3G', 'O2G', 'O1G', 'PG' ]:
return 0
# Accept all atoms otherwise.
return 1
class Chain:
"""
The object which stores all our data and the methods to process it.
Chains accumulate information through this scipt, and are saved to files at the end of major steps.
"""
def __init__(self, pdb_id, pdb_model, pdb_chain_id, chain_label, eq_class, rfam="", inferred=False, pdb_start=None, pdb_end=None):
self.pdb_id = pdb_id # PDB ID
self.pdb_model = int(pdb_model) # model ID, starting at 1
self.pdb_chain_id = pdb_chain_id # chain ID (mmCIF), multiple letters
if len(rfam):
self.mapping = Mapping(chain_label, rfam, pdb_start, pdb_end, inferred)
else:
self.mapping = None
self.eq_class = eq_class # BGSU NR list class id
self.chain_label = chain_label # chain pretty name
self.file = "" # path to the 3D PDB file
self.seq = "" # sequence with modified nts
self.seq_to_align = "" # sequence with modified nts replaced by N, but gaps can exist
self.length = -1 # length of the sequence (missing residues are not counted)
self.full_length = -1 # length of the chain extracted from source structure ([start; stop] interval, or a subset for inferred mappings)
self.delete_me = False # an error occured during production/parsing
self.error_messages = "" # Error message(s) if any
self.db_chain_id = -1 # index of the RNA chain in the SQL database, table chain
def __str__(self):
if self.mapping is None:
return self.pdb_id + '[' + str(self.pdb_model) + "]-" + self.pdb_chain_id
else:
return self.pdb_id + '[' + str(self.pdb_model) + "]-" + self.pdb_chain_id + "-" + self.mapping.rfam_acc
def __eq__(self, other):
return self.chain_label == other.chain_label and str(self) == str(other)
def __hash__(self):
return hash((self.pdb_id, self.pdb_model, self.pdb_chain_id, self.chain_label))
def extract(self, df, khetatm) -> None:
""" Extract the part which is mapped to Rfam from the main CIF file and save it to another file.
"""
setproctitle(f"RNANet.py {self.chain_label} extract()")
if self.mapping is not None:
status = f"Extract {self.mapping.nt_start}-{self.mapping.nt_end} atoms from {self.pdb_id}-{self.pdb_chain_id}"
self.file = path_to_3D_data+"rna_mapped_to_Rfam/"+self.chain_label+".cif"
else:
status = f"Extract {self.pdb_id}-{self.pdb_chain_id}"
self.file = path_to_3D_data+"rna_only/"+self.chain_label+".cif"
# Check if file exists, if yes, abort (do not recompute)
if os.path.exists(self.file):
notify(status, "using previous file")
return
model_idx = self.pdb_model - (self.pdb_model > 0) # because arrays start at 0, models start at 1
with warnings.catch_warnings():
# Ignore the PDB problems. This mostly warns that some chain is discontinuous.
warnings.simplefilter('ignore', pdb.PDBExceptions.PDBConstructionWarning)
warnings.simplefilter('ignore', pdb.PDBExceptions.BiopythonWarning)
# Load the whole mmCIF into a Biopython structure object:
mmcif_parser = pdb.MMCIFParser()
try:
s = mmcif_parser.get_structure(self.pdb_id, path_to_3D_data + "RNAcifs/"+self.pdb_id+".cif")
except ValueError as e:
warn(f"ValueError in {self.chain_label} CIF file: {e}")
self.delete_me = True
return
except IndexError as e:
warn(f"IndexError in {self.chain_label} CIF file: {e}")
self.delete_me = True
return
if self.mapping is not None:
valid_set = set(df.old_nt_resnum)
else:
valid_set = set()
# Define a selection
sel = SelectivePortionSelector(model_idx, self.pdb_chain_id, valid_set, khetatm)
# save the selection sel into a new structure
new_s=pdb.Structure.Structure(s.get_id())
for model in s:
if sel.accept_model(model):
new_model=pdb.Model.Model(model.get_id())
for chain in model:
if sel.accept_chain(chain):
new_chain=pdb.Chain.Chain(chain.get_id())
for res in chain:
if sel.accept_residue(res):
res_atoms=res.get_atoms()
new_residu=pdb.Residue.Residue(res.get_id(), res.get_resname(), res.get_segid())
for atom in list(res.get_atoms()):
if sel.accept_atom(atom):
new_atom=atom.copy()
new_residu.add(new_atom)
new_chain.add(new_residu)
new_model.add(new_chain)
new_s.add(new_model)
# renumber this structure (portion of the original) with the index_chain and save it in a cif file
t = pdb.Structure.Structure(new_s.get_id())
for model in new_s:
new_model_t=pdb.Model.Model(model.get_id())
for chain in model:
nums=df[["index_chain", "old_nt_resnum", "nt_name"]]
new_chain_t=pdb.Chain.Chain(chain.get_id())
for i in nums.index:
resseq=nums.at[i, 'old_nt_resnum']
icode_res=' '
if type(resseq) is str:
if resseq=='not resolved':
continue
if resseq[0] != '-' :
while resseq.isdigit() is False:
l=len(resseq)
if icode_res==' ':
icode_res=resseq[l-1]
else :
icode_res=resseq[l-1]+icode_res
resseq=resseq[:l-1]
resseq=int(resseq)
index_chain=nums.at[i, "index_chain"]
nt=nums.at[i, "nt_name"]
# particular case 6n5s_1_A, residue 201 in the original cif file (resname = G and HETATM = H_G)
if nt == 'A' or (nt == 'G' and (self.chain_label != '6n5s_1_A' or resseq != 201)) or nt == 'C' or nt == 'U' or nt in ['DG', 'DU', 'DC', 'DA', 'DI', 'DT' ] or nt == 'N' or nt == 'I' :
res=chain[(' ', resseq, icode_res)]
else : # modified nucleotides (e.g. chain 5l4o_1_A)
het='H_' + nt
res=chain[(het, resseq, icode_res)]
res_id=res.get_id()
res_id=list(res_id)
res_id[1]=index_chain
res_id[2]=' '
res_id[0]=' '
res_id=tuple(res_id)
if nt in ['ATP', 'GTP', 'CTP', 'UTP']:
res_name = res.get_resname()[0]
else :
res_name=res.get_resname()
res_atoms=res.get_atoms()
new_residu_t=pdb.Residue.Residue(res_id, res_name, res.get_segid())
for atom in list(res.get_atoms()):
# rename the remaining phosphate group to P, OP1, OP2, OP3
if atom.get_name() in ['PA', 'O1A', 'O2A', 'O3A'] and res_name != 'RIA':
# RIA is a residue made up of 2 riboses and 2 phosphates,
# so it has an O2A atom between the C2A and C1 'atoms,
# and it also has an OP2 atom attached to one of its phosphates
# (see chains 6fyx_1_1, 6zu9_1_1, 6fyy_1_1, 6gsm_1_1 , 3jaq_1_1 and 1yfg_1_A)
# we do not modify the atom names of RIA residue
if atom.get_name() == 'PA':
atom_name = 'P'
if atom.get_name() == 'O1A':
atom_name = 'OP1'
if atom.get_name() == 'O2A':
atom_name = 'OP2'
if atom.get_name() == 'O3A':
atom_name = 'OP3'
new_atom_t = pdb.Atom.Atom(atom_name, atom.get_coord(), atom.get_bfactor(), atom.get_occupancy(), atom.get_altloc(), atom_name, atom.get_serial_number())
else:
new_atom_t=atom.copy()
new_residu_t.add(new_atom_t)
new_chain_t.add(new_residu_t)
new_model_t.add(new_chain_t)
t.add(new_model_t)
# Save that renumbered selection on the mmCIF object s to file
ioobj = pdb.MMCIFIO()
ioobj.set_structure(t)
save_mmcif(ioobj, self.file)
notify(status)
@trace_unhandled_exceptions
def extract_3D_data(self, save_logs=True):
""" Maps DSSR annotations to the chain. """
setproctitle(f"RNANet.py {self.chain_label} extract_3D_data()")
############################################
# Load the mmCIF annotations from file
############################################
try:
with open(path_to_3D_data + "annotations/" + self.pdb_id + ".json", 'r') as json_file:
json_object = json.load(json_file)
notify(f"Read {self.pdb_id} DSSR annotations")
except json.decoder.JSONDecodeError as e:
warn("Could not load "+self.pdb_id+f".json with JSON package: {e}", error=True)
self.delete_me = True
self.error_messages = f"Could not load existing {self.pdb_id}.json file: {e}"
return None
# Print eventual warnings given by DSSR, and abort if there are some
if "warning" in json_object.keys():
warn(f"found DSSR warning in annotation {self.pdb_id}.json: {json_object['warning']}. Ignoring {self.chain_label}.")
if "no nucleotides" in json_object['warning']:
no_nts_set.add(self.pdb_id)
self.delete_me = True
self.error_messages = f"DSSR warning {self.pdb_id}.json: {json_object['warning']}. Ignoring {self.chain_label}."
return None
############################################
# Create the data-frame
############################################
try:
# Create the Pandas DataFrame for the nucleotides of the right chain
nts = json_object["nts"] # sub-json-object
df = pd.DataFrame(nts) # conversion to dataframe
df = df[df.chain_name == self.pdb_chain_id] # keeping only this chain's nucleotides
# Assert nucleotides of the chain are found
if df.empty:
warn(f"Could not find nucleotides of chain {self.pdb_chain_id} in annotation {self.pdb_id}.json. Ignoring chain {self.chain_label}.")
no_nts_set.add(self.pdb_id)
self.delete_me = True
self.error_messages = f"Could not find nucleotides of chain {self.pdb_chain_id} in annotation {self.pdb_id}.json. Either there is a problem with {self.pdb_id} mmCIF download, or the bases are not resolved in the structure. Delete it and retry."
return None
# Remove low pertinence or undocumented descriptors
cols_we_keep = ["index_chain", "nt_resnum", "nt_name", "nt_code", "nt_id", "dbn", "alpha", "beta", "gamma", "delta", "epsilon", "zeta",
"epsilon_zeta", "bb_type", "chi", "glyco_bond", "form", "ssZp", "Dp", "eta", "theta", "eta_prime", "theta_prime", "eta_base", "theta_base",
"v0", "v1", "v2", "v3", "v4", "amplitude", "phase_angle", "puckering"]
df = df[cols_we_keep]
except KeyError as e:
warn(f"Error while parsing DSSR {self.pdb_id}.json output:{e}", error=True)
self.delete_me = True
self.error_messages = f"Error while parsing DSSR's json output:\n{e}"
return None
#############################################
# Select the nucleotides we need
#############################################
# Remove nucleotides of the chain that are outside the Rfam mapping, if any
if self.mapping is not None:
if self.mapping.nt_start > self.mapping.nt_end:
warn(f"Mapping is reversed, this case is not supported (yet). Ignoring chain {self.chain_label}.")
self.delete_me = True
self.error_messages = f"Mapping is reversed, this case is not supported (yet)."
return None
df = self.mapping.filter_df(df)
# Duplicate residue numbers : shift numbering
while True in df.duplicated(['nt_resnum']).values:
i = df.duplicated(['nt_resnum']).values.tolist().index(True)
duplicates = df[df.nt_resnum == df.iloc[i, 1]]
n_dup = len(duplicates.nt_resnum)
index_last_dup = duplicates.index_chain.iloc[-1] - 1
if self.mapping is not None:
self.mapping.log(f"Shifting nt_resnum numbering because of {n_dup} duplicate residues {df.iloc[i,1]}")
try:
if i > 0 and index_last_dup + 1 < len(df.index) and df.iloc[i, 1] == df.iloc[i-1, 1] and df.iloc[index_last_dup + 1, 1] - 1 > df.iloc[index_last_dup, 1]:
# The redundant nts are consecutive in the chain (at the begining at least), and there is a gap at the end
if duplicates.iloc[n_dup-1, 0] - duplicates.iloc[0, 0] + 1 == n_dup:
# They are all contiguous in the chain
# 4v9n-DA case (and similar ones) : 610-611-611A-611B-611C-611D-611E-611F-611G-617-618...
# there is a redundancy (611) followed by a gap (611-617).
# We want the redundancy to fill the gap.
df.iloc[i:i+n_dup-1, 1] += 1
else:
# We solve the problem continous component by continuous component
for j in range(1, n_dup+1):
if duplicates.iloc[j, 0] == 1 + duplicates.iloc[j-1, 0]: # continuous
df.iloc[i+j-1, 1] += 1
else:
break
elif df.iloc[i, 1] == df.iloc[i-1, 1]:
# Common 4v9q-DV case (and similar ones) : e.g. chains contains 17 and 17A which are both read 17 by DSSR.
# Solution : we shift the numbering of 17A (to 18) and the following residues.
df.iloc[i:, 1] += 1
elif duplicates.iloc[0, 0] == 1 and df.iloc[i, 0] == 3:
# 4wzo_1_1J case, there is a residue numbered -1 and read as 1 before the number 0.
df.iloc[1:, 1] += 1
df.iloc[0, 1] = 0
else:
# 4v9k-DA case (and similar ones) : the nt_id is not the full nt_resnum: ... 1629 > 1630 > 163B > 1631 > ...
# Here the 163B is read 163 by DSSR, but there already is a residue 163.
# Solution : set nt_resnum[i] to nt_resnum[i-1] + 1, and shift the following by 1.
df.iloc[i, 1] = 1 + df.iloc[i-1, 1]
df.iloc[i+1:, 1] += 1
except:
warn(f"Error with parsing of {self.chain_label} duplicate residue numbers. Ignoring it.")
self.delete_me = True
self.error_messages = f"Error with parsing of duplicate residues numbers."
return None
# Search for ligands at the end of the selection
# Drop ligands detected as residues by DSSR, by detecting several markers
while (
len(df.index_chain) and df.iloc[-1, 2] not in ["A", "C", "G", "U"]
and (
(df.iloc[[-1]][["alpha", "beta", "gamma", "delta", "epsilon",
"zeta", "v0", "v1", "v2", "v3", "v4"]].isna().values).all()
or (df.iloc[[-1]].puckering == '').any()
)
# large nt_resnum gap between the two last residues
or (len(df.index_chain) >= 2 and df.iloc[-1, 1] > 50 + df.iloc[-2, 1])
or (len(df.index_chain) and df.iloc[-1, 2] in ["GNG", "E2C", "OHX", "IRI", "MPD", "8UZ"])
):
if self.mapping is not None:
self.mapping.log("Droping ligand:")
self.mapping.log(df.tail(1))
df = df.head(-1)
# Duplicates in index_chain : drop, they are ligands
# e.g. 3iwn_1_B_1-91, ligand C2E has index_chain 1 (and nt_resnum 601)
duplicates = [ index for index, element in enumerate(df.duplicated(['index_chain']).values) if element ]
if len(duplicates):
for i in duplicates:
warn(f"Found duplicated index_chain {df.iloc[i,0]} in {self.chain_label}. Keeping only the first.")
if self.mapping is not None:
self.mapping.log(f"Found duplicated index_chain {df.iloc[i,0]}. Keeping only the first.")
df = df.drop_duplicates("index_chain", keep="first") # drop doublons in index_chain
# drop eventual nts with index_chain < the first residue,
# now negative because we renumber to 1 (usually, ligands)
ligands = df[df.index_chain < 0]
if len(ligands.index_chain):
if self.mapping is not None:
for line in ligands.iterrows():
self.mapping.log("Droping ligand:")
self.mapping.log(line)
df = df.drop(ligands.index)
# Find missing index_chain values
# This happens because of resolved nucleotides that have a
# strange nt_resnum value. Thanks, biologists ! :@ :(
# e.g. 4v49-AA, position 5'- 1003 -> 2003 -> 1004 - 3'
diff = set(range(df.shape[0])).difference(df['index_chain'] - 1)
if len(diff) and self.mapping is not None:
# warn(f"Missing residues in chain numbering: {[1+i for i in sorted(diff)]}")
for i in sorted(diff):
# check if a nucleotide with the correct index_chain exists in the nts object
found = None
for nt in nts: # nts is the object from the loaded JSON and contains all nts
if nt['chain_name'] != self.pdb_chain_id:
continue
if nt['index_chain'] == i + 1 + self.mapping.st:
found = nt # Retrieves old angle values from the JSON !
break
if found:
self.mapping.log(f"Residue {i+1+self.mapping.st}-{self.mapping.st} = {i+1} has been saved and renumbered {df.iloc[i,1]} instead of {found['nt_id'].replace(found['chain_name']+ '.' + found['nt_name'], '').replace('^','')}")
df_row = pd.DataFrame([found], index=[i])[df.columns.values]
df_row.iloc[0, 0] = i+1 # index_chain
df_row.iloc[0, 1] = df.iloc[i, 1] # nt_resnum
df = pd.concat([df.iloc[:i], df_row, df.iloc[i:]])
df.iloc[i+1:, 1] += 1
else:
warn(f"Missing index_chain {i} in {self.chain_label} !")
# Assert some nucleotides still exist
try:
# update length of chain from nt_resnum point of view
l = df.iloc[-1, 1] - df.iloc[0, 1] + 1
except IndexError:
warn(f"Could not find real nucleotides of chain {self.pdb_chain_id} between {self.mapping.nt_start} and "
f"{self.mapping.nt_end} ({'not ' if not self.mapping.inferred else ''}inferred). Ignoring chain {self.chain_label}.")
no_nts_set.add(self.pdb_id)
self.delete_me = True
self.error_messages = f"Could not find nucleotides of chain {self.pdb_chain_id} in annotation {self.pdb_id}.json. Either there is a problem with {self.pdb_id} mmCIF download, or the bases are not resolved in the structure. Delete it and retry."
return None
# Add eventual missing rows because of unsolved residues in the chain.
# Sometimes, the 3D structure is REALLY shorter than the family it's mapped to,
# especially with inferred mappings (e.g. 6hcf chain 82 to RF02543)
#
# There are several numbering scales in use here:
# nt_numbering: the residue numbers in the RNA molecule. It can be any range. Unresolved residues count for 1.
# index_chain and self.length: the nucleotides positions within the 3D chain. It starts at 1, and unresolved residues are skipped.
# pdb_start/pdb_end: the RNA molecule portion to extract and map to Rfam. it is related to the index_chain scale.
#
# example on 6hcf chain 82:
# RNA molecule 1 |------------------------------------------- ... ----------| theoretic length of a large subunit.
# portion solved in 3D 1 |--------------|79 85|------------| 156
# Rfam mapping 3 |------------------------------------------ ... -------| 3353 (yes larger, 'cause it could be inferred)
# nt resnum 3 |--------------------------------| 156
# index_chain 1 |-------------|77 83|------------| 154
# expected data point 1 |--------------------------------| 154
#
if l != len(df['index_chain']): # if some residues are missing, len(df['index_chain']) < l
resnum_start = df.iloc[0, 1]
# the rowIDs the missing nucleotides would have (rowID = index_chain - 1 = nt_resnum - resnum_start)
diff = set(range(l)).difference(df['nt_resnum'] - resnum_start)
for i in sorted(diff):
# Add a row at position i
df = pd.concat([df.iloc[:i],
pd.DataFrame({"index_chain": i+1, "nt_resnum": i+resnum_start,
"nt_id": "not resolved", "nt_code": '-', "nt_name": '-'}, index=[i]),
df.iloc[i:]])
# Increase the index_chain of all following lines
df.iloc[i+1:, 0] += 1
df = df.reset_index(drop=True)
self.full_length = len(df.index_chain)
#######################################
# Compute new features
#######################################
# Convert angles
df.loc[:, ['alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'epsilon_zeta', 'chi', 'v0', 'v1', 'v2', 'v3', 'v4', # Conversion to radians
'eta', 'theta', 'eta_prime', 'theta_prime', 'eta_base', 'theta_base', 'phase_angle']] *= np.pi/180.0
df.loc[:, ['alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'epsilon_zeta', 'chi', 'v0', 'v1', 'v2', 'v3', 'v4', # mapping [-pi, pi] into [0, 2pi]
'eta', 'theta', 'eta_prime', 'theta_prime', 'eta_base', 'theta_base', 'phase_angle']] %= (2.0*np.pi)
# Add a sequence column just for the alignments
df['nt_align_code'] = [str(x).upper()
.replace('NAN', '-') # Unresolved nucleotides are gaps
.replace('?', 'N') # Unidentified residues, let's delete them
.replace('T', 'U') # 5MU are modified to t by DSSR, which gives T
.replace('P', 'U') # Pseudo-uridines, but it is not really right to change them to U, see DSSR paper, Fig 2
for x in df['nt_code']]
df['nt_align_code'] = [ x if x in "ACGU-" else 'N' for x in df['nt_align_code'] ] # All other modified nucleotides are transformed to N
# One-hot encoding sequence
df["is_A"] = [1 if x == "A" else 0 for x in df["nt_code"]]
df["is_C"] = [1 if x == "C" else 0 for x in df["nt_code"]]
df["is_G"] = [1 if x == "G" else 0 for x in df["nt_code"]]
df["is_U"] = [1 if x == "U" else 0 for x in df["nt_code"]]
df["is_other"] = [0 if x in "ACGU" else 1 for x in df["nt_code"]]
df["nt_position"] = [ float(i+1)/self.full_length for i in range(self.full_length) ]
# Iterate over pairs to identify base-base interactions
res_ids = list(df['nt_id']) # things like "chainID.C4, chainID.U5"
paired = [''] * self.full_length
pair_type_LW = [''] * self.full_length
pair_type_DSSR = [''] * self.full_length
interacts = [0] * self.full_length
if "pairs" in json_object.keys():
pairs = json_object["pairs"]
for p in pairs:
nt1 = p["nt1"]
nt2 = p["nt2"]
lw_pair = p["LW"]
dssr_pair = p["DSSR"]
if nt1 in res_ids:
nt1_idx = res_ids.index(nt1)
else:
nt1_idx = -1
if nt2 in res_ids:
nt2_idx = res_ids.index(nt2)
else:
nt2_idx = -1
# set nucleotide 1
if nt1 in res_ids:
interacts[nt1_idx] += 1
if paired[nt1_idx] == "":
pair_type_LW[nt1_idx] = lw_pair
pair_type_DSSR[nt1_idx] = dssr_pair
paired[nt1_idx] = str(nt2_idx + 1) # index + 1 is actually index_chain.
else:
pair_type_LW[nt1_idx] += ',' + lw_pair
pair_type_DSSR[nt1_idx] += ',' + dssr_pair
paired[nt1_idx] += ',' + str(nt2_idx + 1) # index + 1 is actually index_chain.
# set nucleotide 2 with the opposite base-pair
if nt2 in res_ids:
interacts[nt2_idx] += 1
if paired[nt2_idx] == "":
if lw_pair != "--":
pair_type_LW[nt2_idx] = lw_pair[0] + lw_pair[2] + lw_pair[1]
else:
pair_type_LW[nt2_idx] = "--"
if dssr_pair != "--":
pair_type_DSSR[nt2_idx] = dssr_pair[0] + dssr_pair[3] + dssr_pair[2] + dssr_pair[1]
else:
pair_type_DSSR[nt2_idx] = "--"
paired[nt2_idx] = str(nt1_idx + 1)
else:
if lw_pair != "--":
pair_type_LW[nt2_idx] += ',' + lw_pair[0] + lw_pair[2] + lw_pair[1]
else:
pair_type_LW[nt2_idx] += ",--"
if dssr_pair != "--":
pair_type_DSSR[nt2_idx] += ',' + dssr_pair[0] + dssr_pair[3] + dssr_pair[2] + dssr_pair[1]
else:
pair_type_DSSR[nt2_idx] += ",--"
paired[nt2_idx] += ',' + str(nt1_idx + 1)
# transform nt_id to shorter values
df['old_nt_resnum'] = [ n.replace(self.pdb_chain_id+'.'+name, '').replace('^', '').replace('/', '') for n, name in zip(df.nt_id, df.nt_name) ]
df['paired'] = paired
df['pair_type_LW'] = pair_type_LW
df['pair_type_DSSR'] = pair_type_DSSR
df['nb_interact'] = interacts
# remove now useless descriptors
df = df.drop(['nt_id', 'nt_resnum'], axis=1)
self.seq = "".join(df.nt_code)
self.seq_to_align = "".join(df.nt_align_code)
self.length = len([x for x in self.seq_to_align if x != "-"])
# Remove too short chains
if self.length < 5:
warn(f"{self.chain_label} sequence is too short, let's ignore it.\t")
self.delete_me = True
self.error_messages = "Sequence is too short. (< 5 resolved nts)"
return None
# Log chain info to file
if save_logs and self.mapping is not None:
self.mapping.to_file(self.chain_label+".log")
return df
def register_chain(self, df):
"""
Saves the extracted 3D data to the database.
"""
setproctitle(f"RNANet.py {self.chain_label} register_chain()")
with sqlite3.connect(runDir+"/results/RNANet.db", timeout=10.0) as conn:
conn.execute('pragma journal_mode=wal') # Allow multiple other readers to ask things while we execute this writing query
# Register the chain in table chain
if self.mapping is not None:
sql_execute(conn, f""" INSERT INTO chain
(structure_id, chain_name, pdb_start, pdb_end, rfam_acc, eq_class, inferred, issue)
VALUES
(?, ?, ?, ?, ?, ?, ?, ?)
ON CONFLICT(structure_id, chain_name, rfam_acc) DO
UPDATE SET pdb_start=excluded.pdb_start,
pdb_end=excluded.pdb_end,
eq_class=excluded.eq_class,
inferred=excluded.inferred,
issue=excluded.issue;""",
data=(str(self.pdb_id), str(self.pdb_chain_id),
int(self.mapping.nt_start), int(self.mapping.nt_end),
str(self.mapping.rfam_acc), str(self.eq_class),
int(self.mapping.inferred), int(self.delete_me)))
# get the chain id
self.db_chain_id = sql_ask_database(conn, f"""SELECT (chain_id) FROM chain
WHERE structure_id='{self.pdb_id}'
AND chain_name='{self.pdb_chain_id}'
AND rfam_acc='{self.mapping.rfam_acc}'
AND eq_class='{self.eq_class}';"""
)[0][0]
else:
sql_execute(conn, """INSERT INTO chain (structure_id, chain_name, rfam_acc, eq_class, issue) VALUES (?, ?, 'unmappd', ?, ?)
ON CONFLICT(structure_id, chain_name, rfam_acc) DO UPDATE SET issue=excluded.issue, eq_class=excluded.eq_class;""",
data=(str(self.pdb_id), str(self.pdb_chain_id), str(self.eq_class), int(self.delete_me)))
self.db_chain_id = sql_ask_database(conn, f"""SELECT (chain_id) FROM chain
WHERE structure_id='{self.pdb_id}'
AND chain_name='{self.pdb_chain_id}'
AND eq_class='{self.eq_class}'
AND rfam_acc = 'unmappd';"""
)[0][0]
# Add the nucleotides if the chain is not an issue
if df is not None and not self.delete_me: # double condition is theoretically redundant here, but you never know
sql_execute(conn, f"""INSERT OR IGNORE INTO nucleotide
(chain_id, index_chain, nt_name, nt_code, dbn, alpha, beta, gamma, delta, epsilon, zeta,
epsilon_zeta, bb_type, chi, glyco_bond, form, ssZp, Dp, eta, theta, eta_prime, theta_prime, eta_base, theta_base,
v0, v1, v2, v3, v4, amplitude, phase_angle, puckering, nt_align_code, is_A, is_C, is_G, is_U, is_other, nt_position,
old_nt_resnum, paired, pair_type_LW, pair_type_DSSR, nb_interact)
VALUES ({self.db_chain_id}, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,
?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);""",
many=True, data=list(df.to_records(index=False)), warn_every=10)
class Job:
""" This class contains information about a task to run later.
This could be a system command or the execution of a Python function.
Time and memory usage of a job can be monitored.
"""
def __init__(self, results="", command=[], function=None, args=[], how_many_in_parallel=0, priority=1, timeout=None, checkFunc=None, checkArgs=[], label=""):
self.cmd_ = command # A system command to run
self.func_ = function # A python function to run
self.args_ = args # The args tuple of the function to run
self.checkFunc_ = checkFunc # A function to check if the Job as already been executed before (and abort execution if yes)
self.checkArgs_ = checkArgs # Arguments for the checkFunc
self.results_file = results # A filename where the job stores its results, to check for existence before execution
self.priority_ = priority # Priority of the job in a list of jobs (Jobs with priority 1 are processed first, then priority 2, etc. Unrelated to processes priority.)
self.timeout_ = timeout # Abort the job if taking too long
self.comp_time = -1 # Time to completion of the job. -1 means 'not executed yet'
self.max_mem = -1 # Peak RAM+Swap usage of the job. -1 means 'not executed yet'
self.label = label # Title
# Deploy the job on a Pool() started using 'how_many_in_parallel' CPUs.
if not how_many_in_parallel:
self.nthreads = read_cpu_number()
elif how_many_in_parallel == -1:
self.nthreads = read_cpu_number() - 1
else:
self.nthreads = how_many_in_parallel
def __str__(self):
if self.func_ is None:
s = f"{self.priority_}({self.nthreads}) [{self.comp_time}]\t{self.label:25}" + " ".join(self.cmd_)
else:
s = f"{self.priority_}({self.nthreads}) [{self.comp_time}]\t{self.label:25}{self.func_.__name__}(" \
+ " ".join([ str(a) for a in self.args_ ]) + ")"
return s
class Monitor:
""" A job that simply watches the memory usage of another process.
Checks the RAM+Swap usage of monitored process and its children every 0.1 sec.
Returns the peak value at the end.
"""
def __init__(self, pid):
self.keep_watching = True
self.target_pid = pid
def check_mem_usage(self):
# Get the process object
target_process = psutil.Process(self.target_pid)
# Start watching
max_mem = -1
while self.keep_watching:
try:
# read memory usage
info = target_process.memory_full_info()
mem = info.rss + info.swap
# Do the same for every child process
for p in target_process.children(recursive=True):
info = p.memory_full_info()
mem += info.rss + info.swap
except psutil.NoSuchProcess:
# The process that we watch is finished, dead, or killed.
self.keep_watching = False
finally:
# Update the peak value
if mem > max_mem:
max_mem = mem
# Wait 100 ms and loop
sleep(0.1)
# The watch has ended
return max_mem
class Downloader:
"""
An object with methods to download public data from the internet.
"""
def download_Rfam_PDB_mappings(self):
"""Query the Rfam public MySQL database for mappings between their RNA families and PDB structures.
"""
setproctitle(f"RNANet.py download_Rfam_PDB_mappings()")
# Download PDB mappings to Rfam family
print("> Fetching latest PDB mappings from Rfam..." + " " * 29, end='', flush=True)
try:
db_connection = sqlalchemy.create_engine('mysql+pymysql://rfamro@mysql-rfam-public.ebi.ac.uk:4497/Rfam')
mappings = pd.read_sql('SELECT rfam_acc, pdb_id, chain, pdb_start, pdb_end, bit_score, evalue_score, cm_start, cm_end, hex_colour FROM pdb_full_region WHERE is_significant=1;',
con=db_connection)
mappings.to_csv(runDir + "/data/Rfam-PDB-mappings.csv")
print(f"\t{validsymb}")
except sqlalchemy.exc.OperationalError: # Cannot connect :'(
print(f"\t{errsymb}")
# Check if a previous run succeeded (if file exists, use it)
if os.path.isfile(runDir + "/data/Rfam-PDB-mappings.csv"):
print("\t> Using previous version.")
mappings = pd.read_csv(runDir + "/data/Rfam-PDB-mappings.csv")
else: # otherwise, abort.
print("Can't do anything without data. Exiting.")
raise Exception("Can't reach mysql-rfam-public.ebi.ac.uk on port 4497. Is it open on your system ?")
return mappings
def download_Rfam_cm(self):
""" Download the covariance models from Rfam.
Does not download if already there.
"""
setproctitle(f"RNANet.py download_Rfam_cm()")
print(f"\t> Download Rfam.cm.gz from Rfam..." + " " * 37, end='', flush=True)
if not os.path.isfile(path_to_seq_data + "Rfam.cm"):
try:
subprocess.run(["wget", "ftp://ftp.ebi.ac.uk/pub/databases/Rfam/CURRENT/Rfam.cm.gz", "-O", path_to_seq_data + "Rfam.cm.gz"])
print(f"\t{validsymb}", flush=True)
print(f"\t\t> Uncompressing Rfam.cm...", end='', flush=True)
subprocess.run(["gunzip", path_to_seq_data + "Rfam.cm.gz"], stdout=subprocess.DEVNULL)
print(f"\t{validsymb}", flush=True)
except:
warn(f"Error downloading and/or extracting Rfam.cm !\t", error=True)
else:
print(f"{validsymb}\t(no need)", flush=True)
def download_Rfam_family_stats(self, list_of_families):
"""Query the Rfam public MySQL database for statistics about their RNA families.
Family ID, number of sequences identified, maximum length of those sequences.
SETS family in the database (partially)
"""
setproctitle(f"RNANet.py download_Rfam_family_stats()")
try:
db_connection = sqlalchemy.create_engine('mysql+pymysql://rfamro@mysql-rfam-public.ebi.ac.uk:4497/Rfam')
# Prepare the SQL query. It computes the length of the chains and gets the maximum length by family.
q = """SELECT stats.rfam_acc, k.description, stats.maxlength FROM
(SELECT fr.rfam_acc, MAX(
(CASE WHEN fr.seq_start > fr.seq_end THEN fr.seq_start
ELSE fr.seq_end
END)
-
(CASE WHEN fr.seq_start > fr.seq_end THEN fr.seq_end
ELSE fr.seq_start
END) + 1
) AS 'maxlength'
FROM full_region fr
GROUP BY fr.rfam_acc
) as stats
NATURAL JOIN
(SELECT rfam_acc, description FROM keywords) as k;
"""
# Query the public database
d = pd.read_sql(q, con=db_connection)
# filter the results to families we are interested in
d = d[d["rfam_acc"].isin(list_of_families)]
print(d)
with sqlite3.connect(runDir + "/results/RNANet.db", timeout=20.0) as conn:
conn.execute('pragma journal_mode=wal') # Allow multiple other readers to ask things while we execute this writing query
# We use the REPLACE keyword to get the latest information
sql_execute(conn, """INSERT OR REPLACE INTO family (rfam_acc, description, max_len)
VALUES (?, ?, ?);""",
many=True,
data=list(d.to_records(index=False))
)
except sqlalchemy.exc.OperationalError:
warn("Something's wrong with the SQL database. Check mysql-rfam-public.ebi.ac.uk status and try again later. Not printing statistics.")
def download_Rfam_sequences(self, rfam_acc):
""" Downloads the unaligned sequences known related to a given RNA family.
Actually gets a FASTA archive from the public Rfam FTP. Does not download if already there."""
setproctitle(f"RNANet.py download_Rfam_sequences({rfam_acc})")
if not os.path.isfile(path_to_seq_data + f"rfam_sequences/fasta/{rfam_acc}.fa.gz"):
for _ in range(10): # retry 100 times if it fails
try:
subprocess.run(["wget", f'ftp://ftp.ebi.ac.uk/pub/databases/Rfam/CURRENT/fasta_files/{rfam_acc}.fa.gz', "-O",
path_to_seq_data + f"rfam_sequences/fasta/{rfam_acc}.fa.gz"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
notify(f"Downloaded {rfam_acc}.fa.gz from Rfam")
return # if it worked, no need to retry
except Exception as e:
warn(f"Error downloading {rfam_acc}.fa.gz: {e}")
warn("retrying in 0.2s (worker " + str(os.getpid()) + f', try {_+1}/100)')
time.sleep(0.2)
warn("Tried to reach Rfam FTP 100 times and failed. Aborting.", error=True)
else:
notify(f"Downloaded {rfam_acc}.fa.gz from Rfam", "already there")
def download_BGSU_NR_list(self, res):
""" Downloads a list of RNA 3D structures proposed by Bowling Green State University RNA research group.
The chosen list is the one with resolution threshold just above the desired one.
Does not remove structural redundancy.
"""
setproctitle(f"RNANet.py download_BGSU_NR_list({res})")
nr_code = min([i for i in [1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 20.0] if i >= res])
print(f"> Fetching latest list of RNA files at {nr_code} A resolution from BGSU website...", end='', flush=True)
# Download latest BGSU non-redundant list
try:
s = requests.get(f"http://rna.bgsu.edu/rna3dhub/nrlist/download/current/{nr_code}A/csv").content
nr = open(path_to_3D_data + f"latest_nr_list_{nr_code}A.csv", 'w')
nr.write("class,representative,class_members\n")
nr.write(io.StringIO(s.decode('utf-8')).getvalue())
nr.close()
except:
warn("Error downloading NR list !\t", error=True)
# Try to read previous file
if os.path.isfile(path_to_3D_data + f"latest_nr_list_{nr_code}A.csv"):
print("\t> Use of the previous version.\t", end="", flush=True)
else:
return pd.DataFrame([], columns=["class","representative","class_members"])
nrlist = pd.read_csv(path_to_3D_data + f"latest_nr_list_{nr_code}A.csv")
full_structures_list = [ tuple(i[1]) for i in nrlist[["class","representative","class_members"]].iterrows() ]
print(f"\t{validsymb}", flush=True)
# The beginning of an adventure.
return full_structures_list # list of ( str (class), str(representative),str (class_members) )
def download_from_SILVA(self, unit):
setproctitle(f"RNANet.py download_from_SILVA({unit})")
if not os.path.isfile(path_to_seq_data + f"realigned/{unit}.arb"):
try:
print(f"Downloading {unit} from SILVA...", end='', flush=True)
if unit == "LSU":
subprocess.run(["wget", "-nv", "https://www.arb-silva.de/fileadmin/arb_web_db/release_138_1/ARB_files/SILVA_138.1_LSURef_opt.arb.gz",
"-O", path_to_seq_data + "realigned/LSU.arb.gz"])
else:
subprocess.run(["wget", "-nv", "https://www.arb-silva.de/fileadmin/arb_web_db/release_138_1/ARB_files/SILVA_138.1_SSURef_opt.arb.gz",
"-O", path_to_seq_data + "realigned/SSU.arb.gz"])
except:
warn(f"Error downloading the {unit} database from SILVA", error=True)
exit(1)
subprocess.run(["gunzip", path_to_seq_data + f"realigned/{unit}.arb.gz"], stdout=subprocess.DEVNULL)
print('\t'+validsymb)
else:
notify(f"Downloaded and extracted {unit} database from SILVA", "used previous file")
class Mapping:
"""
A custom class to store more information about nucleotide mappings.
"""
def __init__(self, chain_label, rfam_acc, pdb_start, pdb_end, inferred):
"""
Arguments:
rfam_acc : Rfam family accession number of the mapping
pdb_start/pdb_end : nt_resnum start and end values in the 3D data that are mapped to the family
inferred : wether the mapping has been inferred using BGSU's NR list
"""
self.chain_label = chain_label
self.rfam_acc = rfam_acc
self.nt_start = pdb_start # nt_resnum numbering
self.nt_end = pdb_end # nt_resnum numbering
self.inferred = inferred
self.logs = [] # Events are logged when modifying the mapping
def filter_df(self, df):
newdf = df.drop(df[(df.nt_resnum < self.nt_start) |
(df.nt_resnum > self.nt_end)].index)
if len(newdf.index_chain) > 0:
# everything's okay
df = newdf
else:
# There were nucleotides in this chain but we removed them all while
# filtering the ones outside the Rfam mapping.
# This probably means that, for this chain, the mapping is relative to
# index_chain and not nt_resnum.
warn(f"Assuming mapping to {self.rfam_acc} is an absolute position interval.")
weird_mappings.add(self.chain_label + "." + self.rfam_acc)
df = df.drop(df[(df.index_chain < self.nt_start) |
(df.index_chain > self.nt_end)].index)
# If, for some reason, index_chain does not start at one (e.g. 6boh, chain GB), make it start at one
self.st = 0
if len(df.index_chain) and df.iloc[0, 0] != 1:
self.st = df.iloc[0, 0] - 1
df.iloc[:, 0] -= self.st
self.log(f"Shifting index_chain of {self.st}")
# Check that some residues are not included by mistake:
# e.g. 4v4t-AA.RF00382-20-55 contains 4 residues numbered 30 but actually far beyond the mapped part,
# because the icode are not read by DSSR.
toremove = df[df.index_chain > self.nt_end]
if not toremove.empty:
df = df.drop(toremove.index)
self.log(f"Some nt_resnum values are likely to be wrong, not considering residues:")
self.log(str(toremove))
return df
def log(self, message):
if isinstance(message, str):
self.logs.append(message+'\n')
else:
self.logs.append(str(message))
def to_file(self, filename):
if self.logs == []:
return # Do not create a log file if there is nothing to log
if not os.path.exists(runDir+"/logs"):
os.makedirs(runDir+"/logs", exist_ok=True)
with open(runDir+"/logs/"+filename, "w") as f:
f.writelines(self.logs)
class Pipeline:
"""
The RNANet pipeline steps.
"""
def __init__(self):
self.dl = Downloader()
self.known_issues = [] # list of chain_labels to ignore
self.update = [] # list of Chain() objects we need to extract 3D information from
self.n_chains = 0 # len(self.update)
self.retry = [] # list of Chain() objects which we failed to extract information from
self.loaded_chains = [] # list of Chain() objects we successfully extracted information from
self.fam_list = [] # Rfam families of the above chains
# Default options:
self.CRYSTAL_RES = 4.0
self.KEEP_HETATM = False
self.HOMOLOGY = True
self.USE_KNOWN_ISSUES = True
self.RUN_STATS = False
self.EXTRACT_CHAINS = False
self.REUSE_ALL = False
self.REDUNDANT = False
self.ALIGNOPTS = None
self.RRNAALIGNOPTS = ["--mxsize", "8192", "--cpu", "10", "--maxtau", "0.1"]
self.STATSOPTS = None
self.USESINA = False
self.SELECT_ONLY = None
self.ARCHIVE = False
self.SAVELOGS = True
self.FULLINFERENCE = False
def process_options(self):
"""Sets the paths and options of the pipeline
"""
global path_to_3D_data
global path_to_seq_data
setproctitle("RNANet.py process_options()")
try:
opts, _ = getopt.getopt(sys.argv[1:], "r:fhs", ["help", "resolution=", "3d-folder=", "seq-folder=", "keep-hetatm=",
"only=", "cmalign-opts=", "cmalign-rrna-opts=", "stats-opts=", "maxcores=", "sina", "from-scratch",
"full-inference", "no-homology", "redundant", "ignore-issues", "extract",
"all", "no-logs", "archive", "update-homologous", "version"])
except getopt.GetoptError as err:
print(err)
sys.exit(2)
for opt, arg in opts:
if opt in ["--from-scratch", "--update-homologous"] and "tobedefinedbyoptions" in [path_to_3D_data, path_to_seq_data]:
print("Please provide --3d-folder and --seq-folder first, so that we know what to delete and update.")
exit()
if opt == "-h" or opt == "--help":
print("RNANet, a script to build a multiscale RNA dataset from public data\n"
"Developped by Louis Becquey and Khodor Hannoush, 2019/2021")
print()
print("Options:")
print("-h [ --help ]\t\t\tPrint this help message")
print("--version\t\t\tPrint the program version")
print()
print("Select what to do:")
print("--------------------------------------------------------------------------------------------------------------")
print("-f [ --full-inference ]\t\tInfer new mappings even if Rfam already provides some. Yields more copies of"
"\n\t\t\t\t chains mapped to different families.")
print("-s\t\t\t\tRun statistics computations after completion")
print("--stats-opts=…\t\t\tPass additional command line options to the statistics.py script, e.g. \"--wadley --distance-matrices\"")
print("--extract\t\t\tExtract the portions of 3D RNA chains to individual mmCIF files.")
print("--keep-hetatm=False\t\t(True | False) Keep ions, waters and ligands in produced mmCIF files. "
"\n\t\t\t\t Does not affect the descriptors.")
print("--no-homology\t\t\tDo not try to compute PSSMs and do not align sequences."
"\n\t\t\t\t Allows to yield more 3D data (consider chains without a Rfam mapping).")
print()
print("Select how to do it:")
print("--------------------------------------------------------------------------------------------------------------")
print("--3d-folder=…\t\t\tPath to a folder to store the 3D data files. Subfolders will contain:"
"\n\t\t\t\t\tRNAcifs/\t\tFull structures containing RNA, in mmCIF format"
"\n\t\t\t\t\trna_mapped_to_Rfam/\tExtracted 'pure' portions of RNA chains mapped to families"
"\n\t\t\t\t\trna_only/\tExtracted 'pure' RNA chains, not truncated"
"\n\t\t\t\t\tdatapoints/\t\tFinal results in CSV file format.")
print("--seq-folder=…\t\t\tPath to a folder to store the sequence and alignment files. Subfolders will be:"
"\n\t\t\t\t\trfam_sequences/fasta/\tCompressed hits to Rfam families"
"\n\t\t\t\t\trealigned/\t\tSequences, covariance models, and alignments by family")
print("--sina\t\t\t\tAlign large subunit LSU and small subunit SSU ribosomal RNA using SINA instead of Infernal,"
"\n\t\t\t\t the other RNA families will be aligned using infernal.")
print("--maxcores=…\t\t\tLimit the number of cores to use in parallel portions to reduce the simultaneous"
"\n\t\t\t\t need of RAM. Should be a number between 1 and your number of CPUs. Note that portions"
"\n\t\t\t\t of the pipeline already limit themselves to 50% or 70% of that number by default.")
print("--cmalign-opts=…\t\tA string of additional options to pass to cmalign aligner, e.g. \"--nonbanded --mxsize 2048\"")
print("--cmalign-rrna-opts=…\tLike cmalign-opts, but applied for rRNA (large families, memory-heavy jobs).")
print("--archive\t\t\tCreate tar.gz archives of the datapoints text files and the alignments,"
"\n\t\t\t\t and update the link to the latest archive. ")
print("--no-logs\t\t\tDo not save per-chain logs of the numbering modifications.")
print()
print("Select which data we are interested in:")
print("--------------------------------------------------------------------------------------------------------------")
print("-r 4.0 [ --resolution=4.0 ]\tMaximum 3D structure resolution to consider a RNA chain.")
print("--all\t\t\t\tProcess chains even if they already are in the database.")
print("--redundant\t\t\tProcess all members of the equivalence classes not only the representative.")
print("--only\t\t\t\tAsk to process a specific chains only (could be 4v49, 4v49_1_AA, or 4v49_1_AA_5-1523).")
print("--ignore-issues\t\t\tDo not ignore already known issues and attempt to compute them.")
print("--update-homologous\t\tRe-download Rfam and SILVA databases, realign all families, and recompute all CSV files.")
print("--from-scratch\t\t\tDelete database, local 3D and sequence files, and known issues, and recompute.")
print()
print("Typical usage:")
print(f"nohup bash -c 'time {fileDir}/RNAnet.py --3d-folder ~/Data/RNA/3D/ --seq-folder ~/Data/RNA/sequences -s --no-logs' &")
sys.exit()
elif opt == '--version':
print("RNANet v1.5 beta, parallelized, Dockerized")
print("Last revision : April 2021")
sys.exit()
elif opt == "-r" or opt == "--resolution":
assert float(arg) > 0.0 and float(arg) <= 20.0
self.CRYSTAL_RES = float(arg)
elif opt == "-s":
self.RUN_STATS = True
elif opt == "--keep-hetatm":
assert arg in ["True", "False"]
self.KEEP_HETATM = (arg == "True")
elif opt == "--no-homology":
self.HOMOLOGY = False
elif opt == '--3d-folder':
path_to_3D_data = os.path.abspath(arg)
if path_to_3D_data[-1] != '/':
path_to_3D_data += '/'
print("> Storing 3D data into", path_to_3D_data)
elif opt == '--seq-folder':
path_to_seq_data = os.path.abspath(arg)
if path_to_seq_data[-1] != '/':
path_to_seq_data += '/'
print("> Storing sequences into", path_to_seq_data)
elif opt == "--ignore-issues":
self.USE_KNOWN_ISSUES = False
elif opt == "--only":
self.USE_KNOWN_ISSUES = False
self.REUSE_ALL = True
self.SELECT_ONLY = arg
elif opt == "--from-scratch":
warn("Deleting previous database and recomputing from scratch.")
subprocess.run(["rm", "-rf",
path_to_3D_data + "annotations",
path_to_3D_data + "RNAcifs",
path_to_3D_data + "rna_mapped_to_Rfam",
path_to_3D_data + "rnaonly",
path_to_seq_data + "realigned",
path_to_seq_data + "rfam_sequences",
runDir + "/known_issues.txt",
runDir + "/known_issues_reasons.txt",
runDir + "/results/RNANet.db"])
elif opt == "--update-homologous":
warn("Deleting previous sequence files and recomputing alignments.")
subprocess.run(["rm", "-rf",
path_to_seq_data + "realigned",
path_to_seq_data + "rfam_sequences"])
self.REUSE_ALL = True
elif opt == "cmalign-opts":
self.ALIGNOPTS = arg
elif opt == "cmalign-rrna-opts":
self.RRNAALIGNOPTS = " ".split(arg)
elif opt == "stats-opts":
self.STATSOPTS = " ".split(arg)
elif opt == "--all":
self.REUSE_ALL = True
self.USE_KNOWN_ISSUES = False
elif opt == "--extract":
self.EXTRACT_CHAINS = True
elif opt == "--archive":
self.ARCHIVE = True
elif opt == "--no-logs":
self.SAVELOGS = False
elif opt == "--maxcores":
global ncores
ncores = min(ncores, int(arg))
elif opt == "-f" or opt == "--full-inference":
self.FULLINFERENCE = True
elif opt=="--redundant":
self.REDUNDANT = True
elif opt=="--sina":
self.USESINA = True
if self.HOMOLOGY and "tobedefinedbyoptions" in [path_to_3D_data, path_to_seq_data] or path_to_3D_data == "tobedefinedbyoptions":
print("usage: RNANet.py --3d-folder path/where/to/store/chains --seq-folder path/where/to/store/alignments")
print("See RNANet.py --help for more information.")
exit(1)
@trace_unhandled_exceptions
def list_available_mappings(self) -> None:
"""List 3D chains with available Rfam mappings.
Return a list of Chain() objects with the mappings set up.
If self.HOMOLOGY is set to False, simply returns a list of Chain() objects with available 3D chains.
"""
setproctitle("RNANet.py list_available_mappings()")
# List all 3D RNA chains below given resolution
full_structures_list = self.dl.download_BGSU_NR_list(self.CRYSTAL_RES) # list of tuples ( class, class_members )
# Check for a list of known problems:
if os.path.isfile(runDir + "/known_issues.txt"):
with open(runDir + "/known_issues.txt", 'r') as issues:
if self.HOMOLOGY:
self.known_issues = [ x[:-1] for x in issues.readlines() if '-' in x ]
else:
self.known_issues = [ x[:-1] for x in issues.readlines() if not '-' in x ]
if self.USE_KNOWN_ISSUES:
print("\t> Ignoring known issues:")
print(" ".join(self.known_issues))
if self.HOMOLOGY:
# Ask Rfam their mappings between PDB structures and Rfam families
allmappings = self.dl.download_Rfam_PDB_mappings()
# Compute the extended list of mappable structures using NR-list and Rfam-PDB mappings
# And get Chain() objects.
# If self.FULLINFERENCE is False, the extended list is already filtered to remove
# the chains which already are in the database.
print("> Building list of structures...", flush=True)
p = Pool(initializer=init_with_tqdm, initargs=(tqdm.get_lock(),), processes=ncores)
try:
pbar = tqdm(full_structures_list, maxinterval=1.0, miniters=1,
desc="Eq. classes", bar_format="{desc}:{percentage:3.0f}%|{bar}|")
problems = []
for _, results in enumerate(p.imap_unordered(partial(
work_infer_mappings,
not self.REUSE_ALL,
allmappings,
self.FULLINFERENCE,
self.REDUNDANT
),
full_structures_list,
chunksize=1)):
newproblems, newchains = results
problems += newproblems
self.update += newchains
pbar.update(1) # Everytime the iteration finishes, update the global progress bar
pbar.close()
p.close()
p.join()
except KeyboardInterrupt:
warn("KeyboardInterrupt, terminating workers.", error=True)
pbar.close()
p.terminate()
p.join()
exit(1)
# Display the issues afterwards
for p in problems:
warn(p)
else:
conn = sqlite3.connect(runDir+"/results/RNANet.db", timeout=10.0)
conn.execute('pragma journal_mode=wal')
for eq_class, representative, codelist in tqdm(full_structures_list, desc="Eq. classes"):
codes = codelist.replace('+', ',').split(',')
# Simply convert the list of codes to Chain() objects
if self.REDUNDANT:
for c in codes:
nr = c.split('|')
pdb_id = nr[0].lower()
pdb_model = int(nr[1])
pdb_chain_id = nr[2].upper()
chain_label = f"{pdb_id}_{str(pdb_model)}_{pdb_chain_id}"
res = sql_ask_database(conn, f"""SELECT chain_id from chain
WHERE structure_id='{pdb_id}'
AND chain_name='{pdb_chain_id}'
AND rfam_acc = 'unmappd'
AND issue=0""")
if not len(res) or self.REUSE_ALL: # the chain is NOT yet in the database, or this is a known issue
self.update.append(Chain(pdb_id, pdb_model, pdb_chain_id, chain_label, eq_class))
else:
nr = representative.split('|')
pdb_id = nr[0].lower()
pdb_model = int(nr[1])
pdb_chain_id = nr[2].upper()
chain_label = f"{pdb_id}_{str(pdb_model)}_{pdb_chain_id}"
res = sql_ask_database(conn, f"""SELECT chain_id from chain
WHERE structure_id='{pdb_id}'
AND chain_name='{pdb_chain_id}'
AND rfam_acc = 'unmappd'
AND issue=0""")
if not len(res) or self.REUSE_ALL: # the chain is NOT yet in the database, or this is a known issue
self.update.append(Chain(pdb_id, pdb_model, pdb_chain_id, chain_label, eq_class))
conn.close()
if self.SELECT_ONLY is not None:
print("> Using only chains with label " + self.SELECT_ONLY + "... ", end="")
self.update = [ c for c in self.update if self.SELECT_ONLY in c.chain_label ]
if len(self.update):
print(validsymb)
else:
print("None found ! " + errsymb)
exit(1)
self.n_chains = len(self.update)
print(str(self.n_chains) + " RNA chains of interest.")
@trace_unhandled_exceptions
def dl_and_annotate(self, retry=False, coeff_ncores=0.75):
"""
Gets mmCIF files from the PDB, and runs DSSR on them.
Ignores a structure if the file already exists (not if we are retrying).
REQUIRES the previous definition of self.update, so call list_available_mappings() before.
SETS table structure
"""
setproctitle(f"RNANet.py dl_and_annotate(retry={retry})")
# Prepare the results folders
if not os.path.isdir(path_to_3D_data + "RNAcifs"):
# for the whole structures
os.makedirs(path_to_3D_data + "RNAcifs")
if not os.path.isdir(path_to_3D_data + "annotations"):
# for DSSR analysis of the whole structures
os.makedirs(path_to_3D_data + "annotations")
# Download and annotate
print("> Downloading and annotating structures (or checking previous results if they exist)...", flush=True)
if retry:
mmcif_list = sorted(set([c.pdb_id for c in self.retry]))
else:
mmcif_list = sorted(set([c.pdb_id for c in self.update]))
try:
p = Pool(initializer=init_with_tqdm, initargs=(tqdm.get_lock(),), processes=int(coeff_ncores*ncores))
pbar = tqdm(mmcif_list, maxinterval=1.0, miniters=1, desc="mmCIF files")
for _ in p.imap_unordered(work_mmcif, mmcif_list, chunksize=1):
pbar.update(1) # Everytime the iteration finishes, update the global progress bar
pbar.close()
p.close()
p.join()
except KeyboardInterrupt:
warn("KeyboardInterrupt, terminating workers.", error=True)
pbar.close()
p.terminate()
p.join()
exit(1)
def build_chains(self, retry=False, coeff_ncores=1.0):
""" Extract the desired chain portions if asked,
and extract their informations from the JSON files to the database.
REQUIRES the previous definition of self.update, so call list_available_mappings() before.
SETS self.loaded_chains
"""
setproctitle(f"RNANet.py build_chains(retry={retry})")
# Prepare folders
if self.EXTRACT_CHAINS:
if self.HOMOLOGY and not os.path.isdir(path_to_3D_data + "rna_mapped_to_Rfam"):
# for the portions mapped to Rfam
os.makedirs(path_to_3D_data + "rna_mapped_to_Rfam")
if (not self.HOMOLOGY) and not os.path.isdir(path_to_3D_data + "rna_only"):
# extract chains of pure RNA
os.makedirs(path_to_3D_data + "rna_only")
# define and run jobs
joblist = []
if retry:
clist = self.retry
else:
clist = self.update
for c in clist:
if retry:
c.delete_me = False # give a second chance
if (c.chain_label not in self.known_issues) or not self.USE_KNOWN_ISSUES:
joblist.append(Job(function=work_build_chain, how_many_in_parallel=int(coeff_ncores*ncores),
args=[c, self.EXTRACT_CHAINS, self.KEEP_HETATM, retry, self.SAVELOGS]))
try:
results = execute_joblist(joblist)
except Exception as e:
warn(str(e), error=True)
print("Exiting", str(e), flush=True)
exit(1)
# If there were newly discovered problems, add this chain to the known issues
issues = 0
issues_names = []
ki = open(runDir + "/known_issues.txt", 'a')
kir = open(runDir + "/known_issues_reasons.txt", 'a')
for c in results:
if c[1].delete_me and c[1].chain_label not in self.known_issues:
if retry or "Could not load existing" not in c[1].error_messages:
self.known_issues.append(c[1].chain_label)
issues += 1
issues_names.append(c[1].chain_label)
ki.write(c[1].chain_label + '\n')
kir.write(c[1].chain_label + '\n' +
c[1].error_messages + '\n\n')
with sqlite3.connect(runDir+"/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal') # Allow multiple other readers to ask things while we execute this writing query
sql_execute(conn, f"UPDATE chain SET issue = 1 WHERE chain_id = ?;", data=(c[1].db_chain_id,))
ki.close()
kir.close()
if issues:
warn(f"Added {issues} newly discovered issues to known issues:")
print("\033[33m" + " ".join(issues_names) + "\033[0m", flush=True)
# Add successfully built chains to list
self.loaded_chains += [c[1] for c in results if not c[1].delete_me]
# Identify errors due to empty JSON files (this happen when RAM is full, we believe).
# Retrying often solves the issue... so retry once with half the cores to limit the RAM usage.
self.to_retry = [ c[1] for c in results if "Could not load existing" in c[1].error_messages ]
def checkpoint_save_chains(self):
"""Saves self.loaded_chains to data/loaded_chains.picke
"""
with open(runDir + "/data/loaded_chains.pickle", "wb") as pick:
pickle.dump(self.loaded_chains, pick)
def checkpoint_load_chains(self):
"""Load self.loaded_chains from data/loaded_chains.pickle
"""
with open(runDir + "/data/loaded_chains.pickle", "rb") as pick:
self.loaded_chains = pickle.load(pick)
def prepare_sequences(self):
"""Downloads homologous sequences and covariance models required to compute MSAs.
REQUIRES that self.loaded_chains is defined.
SETS family (partially, through call)
"""
setproctitle("RNANet.py prepare_sequences()")
# Preparing a results folder
if not os.access(path_to_seq_data + "realigned/", os.F_OK):
os.makedirs(path_to_seq_data + "realigned/")
if not os.path.isdir(path_to_seq_data + "rfam_sequences/fasta/"):
os.makedirs(path_to_seq_data + "rfam_sequences/fasta/", exist_ok=True)
# Update the family table (rfam_acc, description, max_len)
self.dl.download_Rfam_family_stats(self.fam_list)
# Download the covariance models for all families
self.dl.download_Rfam_cm()
joblist = []
for f in self.fam_list:
joblist.append(Job(function=work_prepare_sequences, how_many_in_parallel=ncores, args=[
self.dl, self.USESINA, f, rfam_acc_to_download[f]]))
try:
execute_joblist(joblist)
if self.USESINA and len(set(self.fam_list).intersection(SSU_set)):
self.dl.download_from_SILVA("SSU")
if self.USESINA and len(set(self.fam_list).intersection(LSU_set)):
self.dl.download_from_SILVA("LSU")
except KeyboardInterrupt:
print("Exiting")
exit(1)
def realign(self):
"""Perform multiple sequence alignments.
REQUIRES self.fam_list to be defined
SETS family (partially)
"""
setproctitle("RNANet.py realign()")
# Prepare the job list
joblist = []
for f in self.fam_list:
# the function already uses all CPUs so launch them one by one (how_many_in_parallel=1)
if f in LSU_set or f in SSU_set:
opts = self.RRNAALIGNOPTS
else:
opts = self.ALIGNOPTS
joblist.append(Job(function=work_realign, args=[self.USESINA, opts, f], how_many_in_parallel=1, label=f))
# Execute the jobs
try:
results = execute_joblist(joblist)
except:
print("Exiting")
exit(1)
# Update the database
data = []
for r in results:
align = AlignIO.read(path_to_seq_data + "realigned/" + r[0] + "++.afa", "fasta")
nb_3d_chains = len([1 for r in align if '[' in r.id])
if r[0] in SSU_set: # SSU v138.1 is used
nb_homologs = 2224740 # source: https://www.arb-silva.de/documentation/release-1381/
nb_total_homol = nb_homologs + nb_3d_chains
elif r[0] in LSU_set: # LSU v138.1 is used
nb_homologs = 227331 # source: https://www.arb-silva.de/documentation/release-1381/
nb_total_homol = nb_homologs + nb_3d_chains
else:
nb_total_homol = len(align)
nb_homologs = nb_total_homol - nb_3d_chains
data.append((nb_homologs, nb_3d_chains, nb_total_homol, align.get_alignment_length(), r[2], r[3], r[0]))
with sqlite3.connect(runDir + "/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal') # Allow multiple other readers to ask things while we execute this writing query
sql_execute(conn, """UPDATE family SET nb_homologs = ?, nb_3d_chains = ?, nb_total_homol = ?, ali_len = ?, comput_time = ?, comput_peak_mem = ?
WHERE rfam_acc = ?;""", many=True, data=data)
def remap(self):
"""Compute nucleotide frequencies of some alignments and save them in the database
REQUIRES self.fam_list to be defined
"""
setproctitle("RNANet.py remap()")
print("Computing nucleotide frequencies in alignments...\nThis can be very long on slow storage devices (Hard-drive...)")
print("Check your CPU and disk I/O activity before deciding if the job failed.")
nworkers = max(min(ncores, len(self.fam_list)), 1)
# Prepare the architecture of a shiny multi-progress-bars design
# Push the number of workers to a queue.
global idxQueue # ... Then each Pool worker will
for i in range(nworkers): # ... pick a number from the queue when starting the computation for one family,
idxQueue.put(i) # ... and replace it when the computation has ended so it could be picked up later.
# Start a process pool to dispatch the RNA families,
# over multiple CPUs (one family by CPU)
p = Pool(initializer=init_with_tqdm, initargs=(tqdm.get_lock(),), processes=nworkers)
try:
fam_pbar = tqdm(total=len(self.fam_list), desc="RNA families", position=0, leave=True)
# Apply work_pssm_remap to each RNA family
for i, _ in enumerate(p.imap_unordered(partial(work_pssm_remap, useSina=pp.USESINA), self.fam_list, chunksize=1)):
# Everytime the iteration finishes on a family, update the global progress bar over the RNA families
fam_pbar.update(1)
fam_pbar.close()
p.close()
p.join()
except KeyboardInterrupt:
warn("KeyboardInterrupt, terminating workers.", error=True)
fam_pbar.close()
p.terminate()
p.join()
exit(1)
def extractCMs(self):
"""
Extracts Rfam CMs of the families for which we have 3D structures and compresses
them for later use with cmscan.
"""
# Retrieve the list of families and write them to a "keys file"
allfams = []
with sqlite3.connect(runDir+"/results/RNANet.db", timeout=10.0) as conn:
conn.execute('pragma journal_mode=wal')
allfams = sql_ask_database(conn, "SELECT DISTINCT rfam_acc FROM chain ORDER BY rfam_acc ASC;")
allfams = [ r[0]+"\n" for r in allfams ]
if not len(allfams):
return
with open(runDir + "/results/available_families.txt", "w") as f:
f.writelines(allfams)
# Extract the families from Rfam.cm
os.makedirs(runDir + "/results/cm/", exist_ok=True)
subprocess.run(["cmfetch", "-f", "-o", runDir + "/results/cm/RNANet.cm", path_to_seq_data + "Rfam.cm", runDir + "/results/available_families.txt"])
os.remove(runDir + "/results/available_families.txt")
# Compress the cm database for use with cmscan
subprocess.run(["rm", "-f", runDir + "/results/cm/RNANet.cm.i1p", runDir + "/results/cm/RNANet.cm.i1i", runDir + "/results/cm/RNANet.cm.i1m", runDir + "/results/cm/RNANet.cm.i1f"])
subprocess.run(["cmpress", runDir + "/results/cm/RNANet.cm"])
def output_results(self):
"""Produces CSV files, archive them, and additional metadata files
REQUIRES self.loaded_chains (to output corresponding CSV files) and self.fam_list (for statistics)
"""
setproctitle("RNANet.py output_results()")
# Prepare folders:
if not os.path.isdir(path_to_3D_data + "datapoints/"):
os.makedirs(path_to_3D_data + "datapoints/")
# Save to by-chain CSV files
p = Pool(initializer=init_with_tqdm, initargs=(tqdm.get_lock(),), processes=3)
try:
pbar = tqdm(total=len(self.loaded_chains), desc="Saving chains to CSV", position=0, leave=True)
for _, _2 in enumerate(p.imap_unordered(partial(work_save, homology=pp.HOMOLOGY), self.loaded_chains)):
pbar.update(1)
pbar.close()
p.close()
p.join()
except KeyboardInterrupt:
warn("KeyboardInterrupt, terminating workers.", error=True)
pbar.close()
p.terminate()
p.join()
exit(1)
# Run statistics
if self.RUN_STATS:
# Remove previous precomputed data
subprocess.run(["rm", "-f", runDir + f"/data/wadley_kernel_eta_{self.CRYSTAL_RES}.npz",
runDir + f"/data/wadley_kernel_eta_prime_{self.CRYSTAL_RES}.npz",
runDir + f"/data/pair_counts_{self.CRYSTAL_RES}.csv"])
for f in self.fam_list:
subprocess.run(["rm", "-f", runDir + f"/data/{f}.npy",
runDir + f"/data/{f}_pairs.csv",
runDir + f"/data/{f}_counts.csv"])
# Run statistics files
subprocess.run([python_executable, fileDir+"/scripts/regression.py", runDir + "/results/RNANet.db"])
if self.STATSOPTS is None:
subprocess.run([python_executable, fileDir+"/statistics.py", "--3d-folder", path_to_3D_data,
"--seq-folder", path_to_seq_data, "-r", str(self.CRYSTAL_RES)])
else:
subprocess.run([python_executable, fileDir+"/statistics.py", "--3d-folder", path_to_3D_data,
"--seq-folder", path_to_seq_data, "-r", str(self.CRYSTAL_RES)] + self.STATSOPTS)
# Save additional informations
with sqlite3.connect(runDir+"/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal')
pd.read_sql_query("""SELECT rfam_acc, description, idty_percent, nb_homologs, nb_3d_chains, nb_total_homol, max_len, comput_time, comput_peak_mem
FROM family ORDER BY nb_3d_chains DESC;""",
conn).to_csv(runDir + f"/results/families.csv", float_format="%.2f", index=False)
pd.read_sql_query("""SELECT eq_class, structure_id, chain_name, pdb_start, pdb_end, rfam_acc, inferred, date, exp_method, resolution, issue
FROM structure
JOIN chain ON structure.pdb_id = chain.structure_id
ORDER BY structure_id, chain_name, rfam_acc ASC;""",
conn).to_csv(runDir + f"/results/summary.csv", float_format="%.2f", index=False)
if self.ARCHIVE:
os.makedirs(runDir + "/archive", exist_ok=True)
datestr = time.strftime('%Y%m%d')
# The text files
subprocess.run(["rm", "-f", runDir + f"/archive/RNANET_datapoints_latest.tar.gz"])
subprocess.run(["tar", "-C", path_to_3D_data + "/datapoints", "-czf", runDir + f"/archive/RNANET_datapoints_{datestr}.tar.gz", "."])
subprocess.run(["ln", "-s", runDir + f"/archive/RNANET_datapoints_{datestr}.tar.gz", runDir + f"/archive/RNANET_datapoints_latest.tar.gz"])
# The alignments
if self.HOMOLOGY:
os.makedirs(path_to_seq_data + "realigned/3d_only", exist_ok=True)
for f in os.listdir(path_to_seq_data + "realigned"):
if "3d_only.afa" in f:
subprocess.run(["cp", path_to_seq_data + "realigned/" + f, path_to_seq_data + "realigned/3d_only"])
subprocess.run(["rm", "-f", runDir + f"/archive/RNANET_3dOnlyAlignments_latest.tar.gz"])
subprocess.run(["tar", "-C", path_to_seq_data + "realigned/3d_only" , "-czf", runDir + f"/archive/RNANET_3dOnlyAlignments_latest.tar.gz", "."])
# The 3D files
if os.path.isdir(path_to_3D_data + "rna_mapped_to_Rfam"):
subprocess.run(["rm", "-f", runDir + f"/archive/RNANET_MMCIFmappedToRfam_latest.tar.gz"])
subprocess.run(["tar", "-C", path_to_3D_data + "rna_mapped_to_Rfam" , "-czf", runDir + f"/archive/RNANET_MMCIFmappedToRfam_latest.tar.gz", "."])
if os.path.isdir(path_to_3D_data + "rna_only"):
subprocess.run(["rm", "-f", runDir + f"/archive/RNANET_MMCIFall_latest.tar.gz"])
subprocess.run(["tar", "-C", path_to_3D_data + "rna_only" , "-czf", runDir + f"/archive/RNANET_MMCIFall_latest.tar.gz", "."])
def sanitize_database(self):
"""Searches for issues in the database and correct them"""
setproctitle("RNANet.py sanitize_database()")
conn = sqlite3.connect(runDir + "/results/RNANet.db")
conn.execute('pragma journal_mode=wal')
# Assert every structure is used
r = sql_ask_database(conn, """SELECT DISTINCT pdb_id FROM structure WHERE pdb_id NOT IN (SELECT DISTINCT structure_id FROM chain);""")
if len(r) and r[0][0] is not None:
warn("Structures without referenced chains have been detected.")
print(" ".join([x[0] for x in r]))
# Assert every chain is attached to a structure
r = sql_ask_database(conn, """SELECT DISTINCT chain_id, structure_id FROM chain WHERE structure_id NOT IN (SELECT DISTINCT pdb_id FROM structure);""")
if len(r) and r[0][0] is not None:
warn("Chains without referenced structures have been detected")
print(" ".join([str(x[1])+'-'+str(x[0]) for x in r]))
if self.HOMOLOGY:
# check if chains have been re_mapped:
r = sql_ask_database(conn, """SELECT COUNT(DISTINCT chain_id) AS Count, rfam_acc FROM chain
WHERE issue = 0
AND rfam_acc != 'unmappd'
AND chain_id NOT IN (SELECT DISTINCT chain_id FROM re_mapping)
GROUP BY rfam_acc;""")
try:
if len(r) and r[0][0] is not None:
warn("Chains were not remapped:")
for x in r:
print(str(x[0]) + " chains of family " + x[1])
except TypeError as e:
print(r)
print(next(r))
print(e)
exit()
# # TODO : Optimize this (too slow)
# # check if some columns are missing in the remappings:
# r = sql_ask_database(conn, """SELECT c.chain_id, c.structure_id, c.chain_name, c.rfam_acc, r.index_chain, r.index_ali
# FROM chain as c
# NATURAL JOIN re_mapping as r
# WHERE index_ali NOT IN (SELECT index_ali FROM align_column WHERE rfam_acc = c.rfam_acc);""")
# if len(r) and r[0][0] is not None:
# warn("Missing positions in the re-mapping:")
# for x in r:
# print(x)
# check that filtered alignment have the same length than the number of saved alignment columns for a family
r = sql_ask_database(conn, """select family.rfam_acc, count, ali_filtered_len
FROM family
LEFT JOIN (
SELECT rfam_acc, count(distinct index_ali) as count from align_column where index_ali>0 group by rfam_acc
) AS s ON family.rfam_acc=s.rfam_acc;""")
for f in r:
if f[1] is None or f[2] is None:
warn(f"{f[0]} has incomplete alignement data: {f[1]} alignement columns saved, filtered alignment is of length {f[2]}")
continue
if f[1] != f[2]:
warn(f"{f[0]} has {f[1]} alignement columns saved, but its filtered alignment is of length {f[2]} !")
conn.close()
# ==================== General helper functions =====================
def read_cpu_number():
"""This function reads the number of CPU cores available from /proc/cpuinfo.
One shall not use os.cpu_count() on LXC containers,
because it reads info from /sys wich is not the VM resources but the host resources.
"""
p = subprocess.run(['grep', '-Ec', '(Intel|AMD)', '/proc/cpuinfo'], stdout=subprocess.PIPE)
return int(int(p.stdout.decode('utf-8')[:-1])/2)
def init_with_tqdm(tqdm_lock=None):
"""
This initiation method kills the children when signal is received,
and the children progress is followed using TQDM progress bars.
"""
signal.signal(signal.SIGINT, signal.SIG_IGN)
if tqdm_lock is not None:
tqdm.set_lock(tqdm_lock)
def init_no_tqdm(arg1, arg2, arg3):
"""
This initiaiton method does not kill the children when signal is received,
they will complete and die even after the main process stops.
The children progress is followed using stdout text logs (notify(), warn(), etc)
"""
global n_launched, n_finished, n_skipped
n_launched = arg1
n_finished = arg2
n_skipped = arg3
def warn(message, error=False):
"""
Pretty-print warnings and error messages.
"""
# Cut if too long
if len(message) > 66:
x = message.find(' ', 40, 66)
if x != -1:
warn(message[:x], error=error)
warn(message[x+1:], error=error)
else:
warn(message[:x], error=error)
return
if error:
print(f"\t> \033[31mERR: {message:65s}\033[0m\t{errsymb}", flush=True)
else:
print(f"\t> \033[33mWARN: {message:64s}\033[0m\t{warnsymb}", flush=True)
def notify(message, post=''):
"""
Pretty-print successful finished tasks.
"""
if len(post):
post = '(' + post + ')'
print(f"\t> {message:70s}\t{validsymb}\t{post}", flush=True)
# ========================= Biopython overloads =====================
def save_mmcif(ioobj, out_file, select=Select(), preserve_atom_numbering=False):
"""
MMCIF writer which renumbers residues according to the RNANet index_chain (coming from DSSR).
"""
if isinstance(out_file, str):
fp = open(out_file, "w")
close_file = True
else:
fp = out_file
close_file = False
atom_dict = defaultdict(list)
# Iterate on models
for model in ioobj.structure.get_list():
if not select.accept_model(model):
continue
# mmCIF files with a single model have it specified as model 1
if model.serial_num == 0:
model_n = "1"
else:
model_n = str(model.serial_num)
# This is used to write label_entity_id and label_asym_id and
# increments from 1, changing with each molecule
entity_id = 0
if not preserve_atom_numbering:
atom_number = 1
# Iterate on chains
for chain in model.get_list():
if not select.accept_chain(chain):
continue
chain_id = chain.get_id()
if chain_id == " ":
chain_id = "."
# This is used to write label_seq_id, remaining blank for hetero residues
prev_residue_type = ""
prev_resname = ""
# Iterate on residues
for residue in chain.get_unpacked_list():
if not select.accept_residue(residue):
continue
hetfield, resseq, icode = residue.get_id()
if hetfield == " ":
residue_type = "ATOM"
label_seq_id = str(resseq)
else:
residue_type = "HETATM"
label_seq_id = "."
resseq = str(resseq)
if icode == " ":
icode = "?"
resname = residue.get_resname()
# Check if the molecule changes within the chain.
# This will always increment for the first residue in a
# chain due to the starting values above
if residue_type != prev_residue_type or (residue_type == "HETATM" and resname != prev_resname):
entity_id += 1
prev_residue_type = residue_type
prev_resname = resname
label_asym_id = ioobj._get_label_asym_id(entity_id)
# Iterate on atoms
for atom in residue.get_unpacked_list():
if select.accept_atom(atom):
atom_dict["_atom_site.group_PDB"].append(residue_type)
if preserve_atom_numbering:
atom_number = atom.get_serial_number()
atom_dict["_atom_site.id"].append(str(atom_number))
if not preserve_atom_numbering:
atom_number += 1
element = atom.element.strip()
if element == "":
element = "?"
atom_dict["_atom_site.type_symbol"].append(element)
atom_dict["_atom_site.label_atom_id"].append(atom.get_name().strip())
altloc = atom.get_altloc()
if altloc == " ":
altloc = "."
atom_dict["_atom_site.label_alt_id"].append(altloc)
atom_dict["_atom_site.label_comp_id"].append(resname.strip())
atom_dict["_atom_site.label_asym_id"].append(label_asym_id)
# The entity ID should be the same for similar chains
# However this is non-trivial to calculate so we write "?"
atom_dict["_atom_site.label_entity_id"].append("?")
atom_dict["_atom_site.label_seq_id"].append(label_seq_id)
atom_dict["_atom_site.pdbx_PDB_ins_code"].append(icode)
coord = atom.get_coord()
atom_dict["_atom_site.Cartn_x"].append("%.3f" % coord[0])
atom_dict["_atom_site.Cartn_y"].append("%.3f" % coord[1])
atom_dict["_atom_site.Cartn_z"].append("%.3f" % coord[2])
atom_dict["_atom_site.occupancy"].append(str(atom.get_occupancy()))
atom_dict["_atom_site.B_iso_or_equiv"].append(str(atom.get_bfactor()) )
atom_dict["_atom_site.auth_seq_id"].append(resseq)
atom_dict["_atom_site.auth_asym_id"].append(chain_id)
atom_dict["_atom_site.pdbx_PDB_model_num"].append(model_n)
# Data block name is the structure ID with special characters removed
structure_id = ioobj.structure.id
for c in ["#", "$", "'", '"', "[", "]", " ", "\t", "\n"]:
structure_id = structure_id.replace(c, "")
atom_dict["data_"] = structure_id
# Set the dictionary and write out using the generic dictionary method
ioobj.dic = atom_dict
ioobj._save_dict(fp)
if close_file:
fp.close()
def read(handle):
"""
A shortcut to parse alignment files with our custom class MutableFastaIterator.
"""
iterator = parse(handle)
try:
alignment = next(iterator)
except StopIteration:
raise ValueError("No records found in handle") from None
try:
next(iterator)
raise ValueError("More than one record found in handle")
except StopIteration:
pass
return alignment
def parse(handle):
"""
A shortcut to parse alignment files with our custom class MutableFastaIterator.
Called by function read().
"""
with open(handle, 'r') as fp:
yield from _mutable_SeqIO_to_alignment_iterator(fp)
def _mutable_SeqIO_to_alignment_iterator(handle):
"""
A shortcut to parse alignment files with our custom class MutableFastaIterator.
Used by the parse() function.
"""
records = list(MutableFastaIterator(handle))
if records:
yield MultipleSeqAlignment(records)
# ========================== SQL related ============================
def sql_define_tables(conn):
conn.executescript(
""" PRAGMA foreign_keys = on;
CREATE TABLE IF NOT EXISTS structure (
pdb_id CHAR(4) PRIMARY KEY NOT NULL,
pdb_model CHAR(1) NOT NULL,
date DATE,
exp_method VARCHAR(50),
resolution REAL,
UNIQUE (pdb_id, pdb_model)
);
CREATE TABLE IF NOT EXISTS chain (
chain_id INTEGER PRIMARY KEY NOT NULL,
structure_id CHAR(4) NOT NULL,
chain_name VARCHAR(2) NOT NULL,
eq_class VARCHAR(16),
pdb_start SMALLINT,
pdb_end SMALLINT,
issue TINYINT,
rfam_acc CHAR(7),
inferred TINYINT,
chain_freq_A REAL,
chain_freq_C REAL,
chain_freq_G REAL,
chain_freq_U REAL,
chain_freq_other REAL,
pair_count_cWW SMALLINT,
pair_count_cWH SMALLINT,
pair_count_cWS SMALLINT,
pair_count_cHH SMALLINT,
pair_count_cHS SMALLINT,
pair_count_cSS SMALLINT,
pair_count_tWW SMALLINT,
pair_count_tWH SMALLINT,
pair_count_tWS SMALLINT,
pair_count_tHH SMALLINT,
pair_count_tHS SMALLINT,
pair_count_tSS SMALLINT,
pair_count_other SMALLINT,
UNIQUE (structure_id, chain_name, rfam_acc),
FOREIGN KEY(structure_id) REFERENCES structure(pdb_id) ON DELETE CASCADE,
FOREIGN KEY(rfam_acc) REFERENCES family(rfam_acc) ON DELETE CASCADE
);
CREATE TABLE IF NOT EXISTS nucleotide (
chain_id INT,
index_chain SMALLINT,
old_nt_resnum VARCHAR(5),
nt_position SMALLINT,
nt_name VARCHAR(5),
nt_code CHAR(1),
nt_align_code CHAR(1),
is_A TINYINT, is_C TINYINT, is_G TINYINT, is_U TINYINT, is_other TINYINT,
dbn CHAR(1),
paired VARCHAR(20),
nb_interact TINYINT,
pair_type_LW VARCHAR(20),
pair_type_DSSR VARCHAR(25),
alpha REAL, beta REAL, gamma REAL, delta REAL, epsilon REAL, zeta REAL,
epsilon_zeta REAL,
bb_type VARCHAR(5),
chi REAL,
glyco_bond VARCHAR(3),
v0 REAL, v1 REAL, v2 REAL, v3 REAL, v4 REAL,
form CHAR(1),
ssZp REAL,
Dp REAL,
eta REAL, theta REAL, eta_prime REAL, theta_prime REAL, eta_base REAL, theta_base REAL,
phase_angle REAL,
amplitude REAL,
puckering VARCHAR(20),
PRIMARY KEY (chain_id, index_chain),
FOREIGN KEY(chain_id) REFERENCES chain(chain_id) ON DELETE CASCADE
);
CREATE TABLE IF NOT EXISTS re_mapping (
chain_id INT NOT NULL,
index_chain INT NOT NULL,
index_ali INT NOT NULL,
PRIMARY KEY (chain_id, index_chain),
FOREIGN KEY(chain_id) REFERENCES chain(chain_id) ON DELETE CASCADE
);
CREATE TABLE IF NOT EXISTS family (
rfam_acc CHAR(7) PRIMARY KEY NOT NULL,
description VARCHAR(100),
nb_homologs INT,
nb_3d_chains INT,
nb_total_homol INT,
max_len UNSIGNED SMALLINT,
ali_len UNSIGNED SMALLINT,
ali_filtered_len UNSIGNED SMALLINT,
comput_time REAL,
comput_peak_mem REAL,
idty_percent REAL
);
CREATE TABLE IF NOT EXISTS align_column (
rfam_acc CHAR(7) NOT NULL,
index_ali INT NOT NULL,
index_small_ali INT NOT NULL,
cm_coord INT,
freq_A REAL,
freq_C REAL,
freq_G REAL,
freq_U REAL,
freq_other REAL,
gap_percent REAL,
consensus CHAR(1),
cons_sec_struct CHAR(1),
PRIMARY KEY (rfam_acc, index_ali),
FOREIGN KEY(rfam_acc) REFERENCES family(rfam_acc) ON DELETE CASCADE
);
""")
conn.commit()
# Prepare the WAL files while we're in single thread, otherwise it sometimes fails
# at the first access in WAL mode
conn.execute("pragma journal_mode=wal")
@trace_unhandled_exceptions
def sql_ask_database(conn, sql, warn_every=10):
"""
Reads the SQLite database.
Returns a list of tuples.
"""
cursor = conn.cursor()
for _ in range(100): # retry 100 times if it fails
try:
result = cursor.execute(sql).fetchall()
cursor.close()
return result # if it worked, no need to retry
except sqlite3.OperationalError as e:
if warn_every and not (_+1) % warn_every:
warn(str(e) + ", retrying in 0.2s (worker " +
str(os.getpid()) + f', try {_+1}/100)')
time.sleep(0.2)
cursor.close()
warn("Tried to reach database 100 times and failed. Aborting.", error=True)
return []
@trace_unhandled_exceptions
def sql_execute(conn, sql, many=False, data=None, warn_every=10):
for _ in range(100): # retry 100 times if it fails
try:
if many:
conn.executemany(sql, data)
else:
cur = conn.cursor()
if data is None:
cur.execute(sql)
else:
cur.execute(sql, data)
cur.close()
conn.commit() # Apply modifications
return # if it worked, no need to retry
except sqlite3.OperationalError as e:
if warn_every and not (_+1) % warn_every:
warn(str(e) + ", retrying in 0.2s (worker " +
str(os.getpid()) + f', try {_+1}/100)')
time.sleep(0.2)
warn("Tried to reach database 100 times and failed. Aborting.", error=True)
# ======================= RNANet Jobs and tasks ======================
@trace_unhandled_exceptions
def execute_job(j, jobcount):
"""
Run a Job object.
"""
global n_launched, n_skipped, n_finished
# increase the counter of running jobs
with n_launched.get_lock():
n_launched.value += 1
# Monitor this process
m = -1
monitor = Monitor(os.getpid())
if len(j.cmd_): # The job is a system command
print(f"[{n_launched.value+n_skipped.value}/{jobcount}]\t{j.label}")
# Add the command to logfile
os.makedirs(runDir+"/logs", exist_ok=True)
logfile = open(runDir + "/logs/log_of_the_run.sh", 'a')
logfile.write(" ".join(j.cmd_))
logfile.write("\n")
logfile.close()
# Run it
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
# put the monitor in a different thread
assistant_future = executor.submit(monitor.check_mem_usage)
# run the command. subprocess.run will be a child of this process, and stays monitored.
start_time = time.time()
r = subprocess.run(j.cmd_, timeout=j.timeout_, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
end_time = time.time()
if r.returncode != 0:
if r.stderr is not None:
print(r.stderr, flush=True)
print(f"[{n_launched.value+n_skipped.value}/{jobcount}]\tIssue faced with {j.label}, skipping it and adding it to known issues (if not known).")
with n_launched.get_lock():
n_launched.value -= 1
with n_skipped.get_lock():
n_skipped.value += 1
if j.label not in issues:
issues.add(j.label)
with open("known_issues.txt", "a") as iss:
iss.write(j.label+"\n")
# Stop the Monitor, then get its result
monitor.keep_watching = False
m = assistant_future.result()
elif j.func_ is not None:
print(f"[{n_launched.value+n_skipped.value}/{jobcount}]\t{j.func_.__name__}({', '.join([str(a) for a in j.args_ if type(a) != list])})", flush=True)
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
# put the monitor in a different thread
assistant_future = executor.submit(monitor.check_mem_usage)
# call the python function (in this process)
start_time = time.time()
r = j.func_(* j.args_)
end_time = time.time()
# Stop the Monitor, then get its result
monitor.keep_watching = False
m = assistant_future.result()
# increase the counter of finished jobs
with n_finished.get_lock():
n_finished.value += 1
# return time and memory statistics, plus the job results
t = end_time - start_time
return (t, m, r)
def execute_joblist(fulljoblist):
""" Run a list of job objects.
The jobs in the list can have differente priorities and/or different number of threads.
Returns a tuple (label, actual_result, comp_time, peak_mem)
"""
# Reset counters
with n_launched.get_lock():
n_launched.value = 0
with n_skipped.get_lock():
n_skipped.value = 0
with n_finished.get_lock():
n_finished.value = 0
# Sort jobs in a tree structure, first by priority, then by CPU numbers
jobs = {}
jobcount = len(fulljoblist)
if not jobcount:
warn("nothing to do !")
return []
for job in fulljoblist:
if job.priority_ not in jobs.keys():
jobs[job.priority_] = {}
if job.nthreads not in jobs[job.priority_].keys():
jobs[job.priority_][job.nthreads] = []
jobs[job.priority_][job.nthreads].append(job)
# number of different priorities in the list
nprio = max(jobs.keys())
# Process the jobs from priority 1 to nprio
results = []
for i in range(1, nprio+1):
if i not in jobs.keys():
continue # no job has the priority level i
print("processing jobs of priority", i)
different_thread_numbers = sorted(jobs[i].keys())
# jobs should be processed 1 by 1, 2 by 2, or n by n depending on their definition
for n in different_thread_numbers:
# get the bunch of jobs of same priority and thread number
bunch = jobs[i][n]
if not len(bunch):
continue # no jobs should be processed n by n
print("using", n, "processes:")
# execute jobs of priority i that should be processed n by n:
p = Pool(processes=n, maxtasksperchild=1, initializer=init_no_tqdm, initargs=(n_launched, n_finished, n_skipped))
try:
raw_results = p.map(partial(execute_job, jobcount=jobcount), bunch, chunksize=2)
p.close()
p.join()
except KeyboardInterrupt as e:
warn("KeyboardInterrupt, killing workers (SIGKILL).", error=True)
p.kill()
p.join()
raise e
for j, r in zip(bunch, raw_results):
j.comp_time = round(r[0], 2) # seconds
j.max_mem = int(r[1]/1000000) # MB
results.append((j.label, r[2], j.comp_time, j.max_mem))
# throw back the money
return results
@trace_unhandled_exceptions
def work_infer_mappings(update_only, allmappings, fullinference, redundant, codelist) -> (list, list):
"""Given a list of PDB chains corresponding to an equivalence class from BGSU's NR list,
build a list of Chain() objects mapped to Rfam families, by expanding available mappings
of any element of the list to all the list elements.
update_only (bool) : Only return chains which are not yet in the database
allmappings (DataFrame) : Rfam-PDB mappings CSV
fullinference (bool) : include copies of chains mapped to families of the other members of the equivalence class, even if this chain already has a mapping
redundant (bool) : include all members of the equivalence class, not just the representative
codelist (str) : list of chains of an equivalence class, in the NR-list format
returns list[str], list[Chain] : problems faced, and Chain objects to process.
"""
setproctitle("RNAnet.py work_infer_mappings()")
newchains = []
newproblems = []
known_mappings = pd.DataFrame()
# Split the comma-separated list of chain codes into chain codes:
eq_class = codelist[0]
codes = codelist[2].replace('+', ',').split(',')
representative=codelist[1].replace('+', ',').split(',')[0]
# Search for mappings that apply to an element of this PDB chains list:
for c in codes:
# search for Rfam mappings with this chain c:
m_row_indices = allmappings.pdb_id + "|1|" + allmappings.chain == c[:4].lower()+c[4:]
m = allmappings.loc[m_row_indices].drop(['bit_score', 'evalue_score', 'cm_start', 'cm_end', 'hex_colour'], axis=1)
if len(m):
# remove the found mappings from the dataframe
allmappings = allmappings.loc[m_row_indices == False]
# Add the found mappings to the list of found mappings for this class of equivalence
known_mappings = pd.concat([known_mappings, m])
# Now infer mappings for chains that are not explicitely listed in Rfam-PDB mappings:
if len(known_mappings):
families = set(known_mappings['rfam_acc'])
# generalize
inferred_mappings = known_mappings.drop(['pdb_id', 'chain'], axis=1).drop_duplicates()
# check for approximative redundancy:
if len(inferred_mappings) != len(inferred_mappings.drop_duplicates(subset="rfam_acc")):
# Then, there exists some mapping variants onto the same Rfam family CM,
# but varing in the start/end positions in the chain.
# ==> Summarize them in one mapping but with the largest window.
for rfam in families:
sel_5_to_3 = (inferred_mappings['pdb_start'] < inferred_mappings['pdb_end'])
thisfam_5_3 = (inferred_mappings['rfam_acc'] == rfam) & sel_5_to_3
thisfam_3_5 = (inferred_mappings['rfam_acc'] == rfam) & (sel_5_to_3 == False)
if (
len(inferred_mappings[thisfam_5_3]) != len(inferred_mappings[inferred_mappings['rfam_acc'] == rfam])
and len(inferred_mappings[thisfam_5_3]) > 0
):
# there are mappings in both directions... wtf Rfam ?!
# Reverse-direction hits of cmscan are hits for the (-) strand --> We are not interested in negative strands,
# we do not have their 3D structure ! We should ignore them.
if (len(inferred_mappings[thisfam_5_3]) == len(inferred_mappings[thisfam_3_5]) == 1
and int(inferred_mappings[thisfam_5_3].pdb_start) == int(inferred_mappings[thisfam_3_5].pdb_end)
and int(inferred_mappings[thisfam_5_3].pdb_end) == int(inferred_mappings[thisfam_3_5].pdb_start)
):
# The two mappings are on the same nucleotide interval, but in each sense.
# e.g. RF00254 6v5b and 6v5c... maybe a bug on their side ?
# How can a chain match a CM in both senses ?
# We keep only the 5->3 sense.
inferred_mappings = inferred_mappings.drop(index=inferred_mappings.index[thisfam_3_5])
sel_5_to_3 = (inferred_mappings['pdb_start'] < inferred_mappings['pdb_end'])
thisfam_5_3 = (inferred_mappings['rfam_acc'] == rfam) & sel_5_to_3
thisfam_3_5 = (inferred_mappings['rfam_acc'] == rfam) & (sel_5_to_3 == False)
newproblems.append(f"Found mappings to {rfam} in both directions on the same interval, keeping only the 5'->3' one.")
else:
newproblems.append(f"There are mappings for {rfam} in both directions, this is a clue that the hit is wrong. Ignoring it.")
inferred_mappings = inferred_mappings.drop(index=inferred_mappings.index[thisfam_3_5 | thisfam_5_3])
known_mappings = known_mappings[known_mappings.rfam_acc != rfam]
continue
# Compute consensus for chains in 5' -> 3' sense
if len(inferred_mappings[thisfam_5_3]):
pdb_start_min = min(inferred_mappings[thisfam_5_3]['pdb_start'])
pdb_end_max = max(inferred_mappings[thisfam_5_3]['pdb_end'])
pdb_start_max = max(inferred_mappings[thisfam_5_3]['pdb_start'])
pdb_end_min = min(inferred_mappings[thisfam_5_3]['pdb_end'])
if (pdb_start_max - pdb_start_min < 100) and (pdb_end_max - pdb_end_min < 100):
# the variation is only a few nucleotides, we take the largest window.
inferred_mappings.loc[thisfam_5_3, 'pdb_start'] = pdb_start_min
inferred_mappings.loc[thisfam_5_3, 'pdb_end'] = pdb_end_max
else:
# there probably is an outlier. We chose the median value in the whole list of known_mappings.
known_sel_5_to_3 = (known_mappings['rfam_acc'] == rfam) & (known_mappings['pdb_start'] < known_mappings['pdb_end'])
inferred_mappings.loc[thisfam_5_3, 'pdb_start'] = known_mappings.loc[known_sel_5_to_3, 'pdb_start'].median()
inferred_mappings.loc[thisfam_5_3, 'pdb_end'] = known_mappings.loc[known_sel_5_to_3, 'pdb_end'].median()
inferred_mappings.drop_duplicates(inplace=True)
# Now build Chain() objects for the mapped chains
for c in codes:
if not redundant and c != representative:
# By default, we save only the representative member.
# If --redundant is passed, then save all the chains of the class members
continue
nr = c.split('|')
pdb_id = nr[0].lower()
pdb_model = int(nr[1])
pdb_chain_id = nr[2]
for rfam in families:
# if a known mapping of this chain on this family exists, apply it
this_chain_idxs = (known_mappings.pdb_id + "|1|" + known_mappings.chain == c[:4].lower()+c[4:])
m = known_mappings.loc[this_chain_idxs & (known_mappings['rfam_acc'] == rfam)]
if len(m) and len(m) < 2:
pdb_start = int(m.pdb_start)
pdb_end = int(m.pdb_end)
inferred = False
elif len(m):
# two different parts of the same chain are mapped to the same family... (ex: 6ek0-L5)
# ==> map the whole chain to that family, not the parts
pdb_start = int(m.pdb_start.min())
pdb_end = int(m.pdb_end.max())
inferred = False
elif (fullinference or not(this_chain_idxs.any())):
# if no known mapping on another family, use the inferred mapping
# idem if the user said to do so with --full-inference
pdb_start = int(inferred_mappings.loc[(inferred_mappings['rfam_acc'] == rfam)].pdb_start)
pdb_end = int(inferred_mappings.loc[(inferred_mappings['rfam_acc'] == rfam)].pdb_end)
inferred = True
else:
# skip this family, we cannot map this chain to it.
continue
chain_label = f"{pdb_id}_{str(pdb_model)}_{pdb_chain_id}_{pdb_start}-{pdb_end}"
# Check if the chain exists in the database
if update_only:
with sqlite3.connect(runDir+"/results/RNANet.db", timeout=10.0) as conn:
conn.execute('pragma journal_mode=wal')
res = sql_ask_database(conn, f"""SELECT chain_id from chain
WHERE structure_id='{pdb_id}'
AND chain_name='{pdb_chain_id}'
AND rfam_acc='{rfam}'
AND issue=0""")
if not len(res): # the chain is NOT yet in the database, or this is a known issue
newchains.append(Chain(pdb_id, pdb_model, pdb_chain_id, chain_label, eq_class,
rfam=rfam, inferred=inferred, pdb_start=pdb_start, pdb_end=pdb_end))
else:
newchains.append(Chain(pdb_id, pdb_model, pdb_chain_id, chain_label, eq_class,
rfam=rfam, inferred=inferred, pdb_start=pdb_start, pdb_end=pdb_end))
return newproblems, newchains
@trace_unhandled_exceptions
def work_mmcif(pdb_id):
""" Look for a CIF file (with all chains) from RCSB
SETS table structure
"""
setproctitle(f"RNAnet.py work_mmcif({pdb_id})")
final_filepath = path_to_3D_data+"RNAcifs/"+pdb_id+".cif"
# Attempt to download it if not present
try:
if not os.path.isfile(final_filepath):
subprocess.run(
["wget", f'http://files.rcsb.org/download/{pdb_id}.cif', "-O", final_filepath],
stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL
)
except:
warn(f"Unable to download {pdb_id}.cif. Ignoring it.", error=True)
return
# check if it exists in database
with sqlite3.connect(runDir + "/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal')
r = sql_ask_database(conn, f"""SELECT * from structure where pdb_id = '{pdb_id}';""")
# if not, read the CIF header and register the structure
if not len(r):
# Load the MMCIF file with Biopython
mmCif_info = pdb.MMCIF2Dict.MMCIF2Dict(final_filepath)
# Get info about that structure
try:
exp_meth = mmCif_info["_exptl.method"][0]
except KeyError:
warn(f"Wtf, {pdb_id}.cif has no _exptl.method ? Assuming X-ray.")
warn(f"Check https://files.rcsb.org/header/{pdb_id}.cif to figure it out.")
exp_meth = "X-RAY DIFFRACTION"
date = mmCif_info["_pdbx_database_status.recvd_initial_deposition_date"][0]
if "_refine.ls_d_res_high" in mmCif_info.keys() and mmCif_info["_refine.ls_d_res_high"][0] not in ['.', '?']:
reso = float(mmCif_info["_refine.ls_d_res_high"][0])
elif "_refine.ls_d_res_low" in mmCif_info.keys() and mmCif_info["_refine.ls_d_res_low"][0] not in ['.', '?']:
reso = float(mmCif_info["_refine.ls_d_res_low"][0])
elif "_em_3d_reconstruction.resolution" in mmCif_info.keys() and mmCif_info["_em_3d_reconstruction.resolution"][0] not in ['.', '?']:
reso = float(mmCif_info["_em_3d_reconstruction.resolution"][0])
else:
warn(f"Wtf, structure {pdb_id} has no resolution ?")
warn(f"Check https://files.rcsb.org/header/{pdb_id}.cif to figure it out.")
reso = 0.0
# Save into the database
with sqlite3.connect(runDir + "/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal') # Allow multiple other readers to ask things while we execute this writing query
sql_execute(conn, """INSERT OR REPLACE INTO structure (pdb_id, pdb_model, date, exp_method, resolution)
VALUES (?, ?, DATE(?), ?, ?);""", data=(pdb_id, 1, date, exp_meth, reso))
if not os.path.isfile(path_to_3D_data + "annotations/" + pdb_id + ".json"):
# run DSSR (you need to have it in your $PATH, follow x3dna installation instructions)
output = subprocess.run(["x3dna-dssr", f"-i={final_filepath}", "--json", "--auxfile=no"],
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout = output.stdout.decode('utf-8')
stderr = output.stderr.decode('utf-8')
if "exception" in stderr:
# DSSR is unable to parse the chain.
warn(f"Exception while running DSSR, ignoring {pdb_id}.", error=True)
return 1
# save the analysis to file only if we can load it :/
json_file = open(path_to_3D_data + "annotations/" +
pdb_id + ".json", "w")
json_file.write(stdout)
json_file.close()
return 0
@trace_unhandled_exceptions
def work_build_chain(c, extract, khetatm, retrying=False, save_logs=True):
"""Reads information from JSON and save it to database.
If asked, also extracts the 3D chains from their original structure files.
"""
setproctitle(f"RNAnet.py work_build_chain({c.chain_label})")
if not os.path.isfile(path_to_3D_data + "annotations/" + c.pdb_id + ".json"):
warn(f"Could not find annotations for {c.chain_label}, ignoring it.", error=True)
c.delete_me = True
c.error_messages += f"Could not download and/or find annotations for {c.chain_label}."
# extract the 3D descriptors
if not c.delete_me:
df = c.extract_3D_data(save_logs)
c.register_chain(df)
# Small check that all nucleotides of a chain have an entry in nucleotide table
if not c.delete_me:
with sqlite3.connect(runDir+"/results/RNANet.db", timeout=10.0) as conn:
conn.execute('pragma journal_mode=wal')
nnts = sql_ask_database(conn, f"SELECT COUNT(index_chain) FROM nucleotide WHERE chain_id={c.db_chain_id};", warn_every=10)[0][0]
if not(nnts):
warn(f"Nucleotides not inserted: {c.error_messages}")
c.delete_me = True
c.error_messages = "Nucleotides not inserted !"
else:
notify(f"Inserted {nnts} nucleotides to chain {c.chain_label}")
# extract the portion we want
if extract and not c.delete_me:
c.extract(df, khetatm)
return c
@trace_unhandled_exceptions
def work_prepare_sequences(dl, useSina, rfam_acc, chains):
"""Prepares FASTA files of homologous sequences to realign with cmalign or SINA.
"""
setproctitle("RNAnet.py work_prepare_sequences()")
if useSina and rfam_acc in LSU_set | SSU_set:
if os.path.isfile(path_to_seq_data + f"realigned/{rfam_acc}++.afa"):
# Detect doublons and remove them
existing_afa = AlignIO.read(path_to_seq_data + f"realigned/{rfam_acc}++.afa", "fasta")
existing_ids = [r.id for r in existing_afa]
del existing_afa
new_ids = [str(c) for c in chains]
doublons = [i for i in existing_ids if i in new_ids]
del existing_ids, new_ids
if len(doublons):
warn(f"Removing {len(doublons)} doublons from existing {rfam_acc}++.fa and using their newest version")
fasta = path_to_seq_data + f"realigned/{rfam_acc}++.fa"
seqfile = SeqIO.parse(fasta, "fasta")
# remove it and rewrite it with its own content filtered
os.remove(fasta)
with open(fasta, 'w') as f:
for rec in seqfile:
if rec.id not in doublons:
f.write(format(rec, "fasta"))
# Add the new sequences with previous ones, if any
with open(path_to_seq_data + f"realigned/{rfam_acc}++.fa", "a") as f:
for c in chains:
if len(c.seq_to_align):
f.write(f"> {str(c)}\n"+c.seq_to_align.replace('-', '').replace('U', 'T')+'\n')
status = f"{rfam_acc}: {len(chains)} new PDB sequences to align (with SINA)"
elif not os.path.isfile(path_to_seq_data + f"realigned/{rfam_acc}++.stk"):
# there was no previous aligned sequences, and we use cmalign.
# So, we need to download homologous sequences from Rfam.
# Extracting covariance model for this family
if not os.path.isfile(path_to_seq_data + f"realigned/{rfam_acc}.cm"):
with open(path_to_seq_data + f"realigned/{rfam_acc}.cm", "w") as f:
subprocess.run(["cmfetch", path_to_seq_data + "Rfam.cm", rfam_acc], stdout=f)
notify(f"Extracted {rfam_acc} covariance model (cmfetch)")
# Download homologous sequences
dl.download_Rfam_sequences(rfam_acc)
# Prepare a FASTA file containing Rfamseq hits for that family
if os.path.isfile(path_to_seq_data + f"rfam_sequences/fasta/{rfam_acc}.fa.gz"): # test if download succeeded
# gunzip the file
with gzip.open(path_to_seq_data + f"rfam_sequences/fasta/{rfam_acc}.fa.gz", 'rb') as gz:
file_content = gz.read()
with open(path_to_seq_data + f"realigned/{rfam_acc}.fa", "wb") as plusplus:
plusplus.write(file_content)
# Write the combined fasta file
with open(path_to_seq_data + f"realigned/{rfam_acc}++.fa", "w") as plusplus:
ids = set()
# Remove doublons from the Rfam hits
for r in SeqIO.parse(path_to_seq_data + f"realigned/{rfam_acc}.fa", "fasta"):
if r.id not in ids:
ids.add(r.id)
plusplus.write('> '+r.description+'\n'+str(r.seq)+'\n')
# Add the 3D chains sequences
for c in chains:
if len(c.seq_to_align):
plusplus.write(f"> {str(c)}\n"+c.seq_to_align.replace('-', '').replace('U', 'T')+'\n')
del file_content
# os.remove(path_to_seq_data + f"realigned/{rfam_acc}.fa")
else:
raise Exception(rfam_acc + "sequences download failed !")
status = f"{rfam_acc}: {len(ids)} hits + {len(chains)} PDB sequences to align (with cmalign)"
else: # We are using cmalign and a previous alignment exists
# Add the new sequences to a separate FASTA file
with open(path_to_seq_data + f"realigned/{rfam_acc}_new.fa", "w") as f:
for c in chains:
if len(c.seq_to_align):
f.write(f"> {str(c)}\n"+c.seq_to_align.replace('-', '').replace('U', 'T')+'\n')
status = f"{rfam_acc}: {len(chains)} new PDB sequences to realign (with existing cmalign alignment)"
# print some stats
notify(status)
@trace_unhandled_exceptions
def use_sina(rfam_acc):
"""
When prompted by the user to use SINA the software will use SINA for rRNA SSU and LSU
"""
if rfam_acc in ["RF00177", "RF01960"]:
arbfile = "realigned/SSU.arb"
else:
arbfile = "realigned/LSU.arb"
# Run alignment
subprocess.run(["sina", "-i", path_to_seq_data + f"realigned/{rfam_acc}++.fa",
"-o", path_to_seq_data + f"realigned/{rfam_acc}++.afa",
"-r", path_to_seq_data + arbfile,
"--meta-fmt=csv"])
@trace_unhandled_exceptions
def use_infernal(rfam_acc, alignopts):
"""
Infernal is our default alignment tool except if prompted by the user.
Cmalign will be used for all families except when the user prefers to align rRNA with SINA
"""
if os.path.isfile(path_to_seq_data + "realigned/" + rfam_acc + "++.stk"):
# Alignment exists. We just want to add new sequences into it.
if not os.path.isfile(path_to_seq_data + f"realigned/{rfam_acc}_new.fa"):
# there are no new sequences to align...
return
existing_ali_path = path_to_seq_data + f"realigned/{rfam_acc}++.stk"
new_ali_path = path_to_seq_data + f"realigned/{rfam_acc}_new.stk"
# Align the new sequences
with open(path_to_seq_data + f"realigned/{rfam_acc}_new.log", 'w') as o:
p1 = subprocess.run(["cmalign", "--ifile", path_to_seq_data + f"realigned/{rfam_acc}.ins",
"--sfile", path_to_seq_data + f"realigned/{rfam_acc}.tsv",
"-o", new_ali_path,
path_to_seq_data + f"realigned/{rfam_acc}.cm",
path_to_seq_data + f"realigned/{rfam_acc}_new.fa"],
stdout=o, stderr=subprocess.PIPE)
align_errors = p1.stderr.decode("utf-8")
if len(align_errors):
if "--mxsize" in align_errors:
# not enough available RAM to allocate the DP matrix
warn(f"Not enough RAM to allocate cmalign DP matrix for family {rfam_acc}. Use --sina or --cmalign-opts.", error=True)
else:
warn(align_errors, error=True)
notify("Aligned new sequences together")
# Detect doublons and remove them
try:
existing_stk = AlignIO.read(existing_ali_path, "stockholm")
except ValueError:
# Not a stockholm file
warn(f"Existing alignment is not a Stockholm file !", error=True)
return
existing_ids = [r.id for r in existing_stk]
del existing_stk
try:
new_stk = AlignIO.read(new_ali_path, "stockholm")
except ValueError:
# Not a stockholm file
warn(f"New alignment {new_ali_path} is not a Stockholm file !", error=True)
new_ids = [r.id for r in new_stk]
del new_stk
doublons = [i for i in existing_ids if i in new_ids]
del existing_ids, new_ids
if len(doublons):
warn(f"Removing {len(doublons)} doublons from existing {rfam_acc}++.stk and using their newest version")
with open(path_to_seq_data + "realigned/toremove.txt", "w") as toremove:
toremove.write('\n'.join(doublons)+'\n')
p = subprocess.run(["esl-alimanip", "--seq-r", path_to_seq_data + "realigned/toremove.txt", "-o", existing_ali_path+"2", existing_ali_path],
stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
p = subprocess.run(["mv", existing_ali_path+"2", existing_ali_path],
stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
os.remove(path_to_seq_data + "realigned/toremove.txt")
# And we merge the two alignments
p2 = subprocess.run(["esl-alimerge", "-o", path_to_seq_data + f"realigned/{rfam_acc}_merged.stk",
"--rna", existing_ali_path, new_ali_path],
stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
alignErrors = p1.stderr.decode('utf-8')
mergeErrors = p2.stderr.decode('utf-8')
alignErrors = "Alignment: "+ alignErrors if len(alignErrors) else ""
mergeErrors = "Alignment: "+ mergeErrors if len(mergeErrors) else ""
stderr = alignErrors + mergeErrors
subprocess.run(["mv", path_to_seq_data + f"realigned/{rfam_acc}_merged.stk", existing_ali_path])
notify("Merged alignments into one")
# remove the partial files
os.remove(new_ali_path)
os.remove(path_to_seq_data + f"realigned/{rfam_acc}_new.fa")
else:
# Alignment does not exist yet. We need to compute it from scratch.
print(f"\t> Aligning {rfam_acc} sequences together (cmalign) ...", end='', flush=True)
cmd = ["cmalign"]
if alignopts is not None:
cmd += alignopts
cmd += ['-o', path_to_seq_data + f"realigned/{rfam_acc}++.stk",
"--ifile", path_to_seq_data + f"realigned/{rfam_acc}.ins",
"--sfile", path_to_seq_data + f"realigned/{rfam_acc}.tsv",
path_to_seq_data + f"realigned/{rfam_acc}.cm",
path_to_seq_data + f"realigned/{rfam_acc}++.fa"]
p = subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
stderr = p.stderr.decode("utf-8")
if len(stderr):
print('', flush=True)
warn(f"Error during sequence alignment: {stderr}", error=True)
with open(runDir + "/errors.txt", "a") as er:
er.write(f"Attempting to realign {rfam_acc}:\n" + stderr + '\n')
return 1
else:
print('\t'+validsymb, flush=True)
# Convert Stockholm to aligned FASTA
subprocess.run(["esl-reformat", "-o", path_to_seq_data + f"realigned/{rfam_acc}++.afa",
"--informat", "stockholm",
"afa", path_to_seq_data + f"realigned/{rfam_acc}++.stk"])
subprocess.run(["rm", "-f", "esltmp*"]) # We can use a joker here, because we are not running in parallel for this part.
@trace_unhandled_exceptions
def work_realign(useSina, alignopts, rfam_acc):
""" Runs multiple sequence alignements by RNA family.
It aligns the Rfam hits from a RNA family with the sequences from the list of chains.
Rfam covariance models are used with Infernal tools or SINA based on the options provided by the user.
Even if the user prefers to use SINA it will be used only for rRNA and cmalign for other families
"""
setproctitle(f"RNAnet.py work_realign({rfam_acc})")
if useSina and rfam_acc in LSU_set | SSU_set:
use_sina(rfam_acc)
else:
use_infernal(rfam_acc, alignopts)
# Assert everything worked, or save an error
with open(path_to_seq_data + f"realigned/{rfam_acc}++.afa", 'r') as output:
if not len(output.readline()):
# The process crashed, probably because of RAM overflow
warn(f"Failed to realign {rfam_acc} (killed)", error=True)
with open(runDir + "/errors.txt", "a") as er:
er.write(f"Failed to realign {rfam_acc} (killed)")
@trace_unhandled_exceptions
def work_save_pydca(f,alignment):
# Replace all other letters by a deletion gap just for the
# aim to use pydca as sites other than ACGU . and - are not accepted
for s in alignment:
s.seq = s.seq.toseq().upper().tomutable() # Convert to uppercase as needed for pydca
for i in range(len(s.seq)):
if s.seq[i].upper() not in "ACGU-.":
s.seq[i]='-'
#Create a fasta file to be used by pydca
with open(path_to_seq_data+f"/realigned/{f}_filtered_for_pydca.afa", "w") as only_3d:
try:
only_3d.write(format(alignment, "fasta"))
except ValueError as e:
warn(e)
@trace_unhandled_exceptions
def work_pssm_remap(f, useSina=False):
"""Computes Position-Specific-Scoring-Matrices given the multiple sequence alignment of the RNA family.
This also remaps the 3D object sequence with the aligned sequence in the MSA.
If asked, the 3D object sequence is completed by the consensus nucleotide when one of them is missing.
Uses only 1 core, so this function can be called in parallel.
"""
# Get a worker number to position the progress bar
global idxQueue
thr_idx = idxQueue.get()
##########################################################################################
# Compute frequencies in the alignment
##########################################################################################
setproctitle(f"RNAnet.py work_pssm_remap({f}) compute PSSMs")
# Open the alignment
try:
align = read(path_to_seq_data + f"realigned/{f}++.afa") # This is our custom AlignIO overload which uses MutableSeq instead of Seq
except:
warn(f"{f}'s alignment is wrong. Recompute it and retry.", error=True)
with open(runDir + "/errors.txt", "a") as errf:
errf.write(f"{f}'s alignment is wrong. Recompute it and retry.\n")
return 1
nseqs = len(align)
ncols = align.get_alignment_length()
# Compute statistics per column
pssm_info = np.zeros((6, ncols))
res_index = {'A':0, 'C':1, 'G':2, 'U':3, 'N':4, '-':5}
letters = "ACGUN"
consensus = []
for residue_num in tqdm(range(ncols), position=thr_idx+1, desc=f"Worker {thr_idx+1}: Count bases in fam {f}", leave=False):
# Count the bases (iterate lines)
for record in align:
letter = record.seq[residue_num].upper().replace('.','-')
try:
idx = res_index[letter]
except KeyError:
# warn(f"Unknown residue found in {family} family: {letter}", error=True)
# These are K, R, etc from Rfam. The RNANet sequences provided are pure ACGUN, but not the Rfam ones.
idx = 4 # consider it is N
pssm_info[idx,residue_num] += 1.0
# Get the number of non-gap nucleotides
N = 0
for i in range(5):
N += pssm_info[i,residue_num]
if N>0:
# Divide base counts by number of non-gaps
for i in range(5):
pssm_info[i,residue_num] /= N
# last line is for the gap percentage (Ngaps/Nlines)
pssm_info[5,residue_num] /= nseqs
# Define consensus base for this position:
if pssm_info[5,residue_num] > 0.7:
# gaps are in majority if over 75% (that's my definition)
consensus.append('-')
else:
idx = np.argmax(pssm_info[0:5,residue_num])
if pssm_info[idx, residue_num] > 0.5:
consensus.append(letters[idx])
else:
consensus.append('N')
# At this point, pssm_info is a numpy array containing the PSSM and consensus a list of consensus chars.
##########################################################################################
# Remap sequences of the 3D chains with sequences in the alignment
##########################################################################################
setproctitle(f"RNAnet.py work_pssm_remap({f}) remap")
# For each sequence, remap chain residues with sequence alignment
columns_to_save = set()
re_mappings = []
pbar = tqdm(total=nseqs, position=thr_idx+1, desc=f"Worker {thr_idx+1}: Remap {f} chains", leave=False)
pbar.update(0)
for s in align:
# skip Rfamseq entries
if not '[' in s.id:
continue
# Get the chain id in the database
conn = sqlite3.connect(runDir + '/results/RNANet.db', timeout=10.0)
conn.execute('pragma journal_mode=wal')
db_id = sql_ask_database(conn, f"SELECT chain_id FROM chain WHERE structure_id = '{s.id.split('[')[0]}' AND chain_name = '{s.id.split('-')[1]}' AND rfam_acc = '{f}';")
if len(db_id):
db_id = db_id[0][0]
else:
conn.close()
warn(f"Bizarre... sequence {s.id} is not found in the database ! Cannot remap it ! Ignoring...")
pbar.update(1)
continue
seq_to_align = ''.join([ x[0] for x in sql_ask_database(conn, f"SELECT nt_align_code FROM nucleotide WHERE chain_id = {db_id} ORDER BY index_chain ASC;")])
full_length = len(seq_to_align)
conn.close()
# Save colums in the appropriate positions
i = 0 # to iterate the object sequence
j = 0 # to iterate the alignment sequence
while i < full_length and j < ncols:
# Here we try to map seq_to_align (the sequence of the 3D chain, including gaps when residues are missing),
# with s.seq, the sequence aligned in the MSA, containing any of ACGU and two types of gaps, - and .
if seq_to_align[i] == s.seq[j].upper(): # alignment and sequence correspond (incl. gaps)
re_mappings.append((db_id, i+1, j+1)) # because index_chain in table nucleotide is in [1,N], we use i+1 and j+1.
columns_to_save.add(j+1) # it's a set, doublons are automaticaly ignored
i += 1
j += 1
elif seq_to_align[i] == '-': # '-' in the chain, but '.' or letter in the aligned sequence
# search for a gap to the consensus nearby
k = 0 # Search must start at zero to assert the difference comes from '-' in front of '.'
while j+k < ncols and s.seq[j+k] == '.':
k += 1
# if found, set j to that position
if j+k < ncols and s.seq[j+k] == '-':
re_mappings.append((db_id, i+1, j+k+1))
columns_to_save.add(j+k+1)
i += 1
j += k+1
continue
# if not, take the insertion gap if this is one
if j < ncols and s.seq[j] == '.':
re_mappings.append((db_id, i+1, j+1))
columns_to_save.add(j+1)
s.seq[j] = '-' # We replace the insertion gap by a real gap (thanks to MutableSeqs)
i += 1
j += 1
continue
# else, just mark the gap as unknown (there is an alignment mismatch '-' in the 3D facing a letter in the alignment)
re_mappings.append((db_id, i+1, 0))
i += 1
elif s.seq[j] in ['.', '-']: # gap in the alignment, but not in the real chain
j += 1 # ignore the column
else: # sequence mismatch which is not a gap...
print(f"You are never supposed to reach this. Comparing {s.id} in {i} ({seq_to_align[i-1:i+2]}) with seq[{j}] ({s.seq[j-3:j+4]}).",
seq_to_align, s.seq, sep='\n', flush=True)
raise Exception('Something is wrong with sequence alignment.')
pbar.update(1)
pbar.close()
# Get a sorted list from the set
columns = sorted(columns_to_save)
# Save the re_mappings
conn = sqlite3.connect(runDir + '/results/RNANet.db', timeout=20.0)
conn.execute('pragma journal_mode=wal') # Allow multiple other readers to ask things while we execute this writing query
sql_execute(conn, """INSERT INTO re_mapping (chain_id, index_chain, index_ali)
VALUES (?, ?, ?)
ON CONFLICT(chain_id, index_chain) DO UPDATE SET index_ali=excluded.index_ali;""",
many=True, data=re_mappings)
# Delete alignment columns that are not used anymore from the database
current_family_columns = [ x[0] for x in sql_ask_database(conn, f"SELECT index_ali FROM align_column WHERE rfam_acc = '{f}';")]
unused = []
for col in current_family_columns:
if col not in columns_to_save:
unused.append((f, col))
sql_execute(conn, """DELETE FROM align_column WHERE rfam_acc = ? AND index_ali = ?;""", many=True, data=unused)
conn.commit()
##########################################################################################
# Retrieve or compute metadata relative to the MSA columns
##########################################################################################
setproctitle(f"RNAnet.py work_pssm_remap({f}) insert/match states")
# Get back the information of match/insertion states from the STK file
if (not useSina) or (f not in SSU_set and f not in LSU_set):
alignstk = AlignIO.read(path_to_seq_data + "realigned/" + f + "++.stk", "stockholm")
consensus_2d = alignstk.column_annotations["secondary_structure"]
del alignstk
cm_coord = 1
cm_coords = []
cm_2d = []
for x in consensus_2d:
if x in ".~":
cm_coords.append(None)
cm_2d.append(None)
else:
cm_coords.append(cm_coord)
if x in "[(<{":
cm_2d.append("(")
elif x in "])>}":
cm_2d.append(")")
elif x in ",_-:":
cm_2d.append(".")
else:
warn("Unsupported WUSS secondary structure symbol : "+x)
cm_2d.append(".")
cm_coord += 1
else:
cm_coords = [ None for x in range(ncols) ]
cm_2d = [ None for x in range(ncols) ]
# remove columns from the database if they are not supposed to be saved anymore
already_saved = sql_ask_database(conn, f"SELECT index_ali FROM align_column WHERE rfam_acc='{f}';")
already_saved = set([ x[0] for x in already_saved ])
to_remove = already_saved - columns_to_save
if len(to_remove):
sql_execute(conn, f"DELETE FROM align_column WHERE rfam_acc='{f}' AND index_ali = ?;", data=(sorted(to_remove),))
# Now store the columns
data = [(f,j,i+1,cm_coords[j-1]) + tuple(pssm_info[:,j-1]) + (consensus[j-1], cm_2d[j-1]) for i, j in enumerate(columns)]
sql_execute(conn, """INSERT INTO align_column (rfam_acc, index_ali, index_small_ali, cm_coord, freq_A, freq_C, freq_G, freq_U, freq_other, gap_percent, consensus, cons_sec_struct)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) ON CONFLICT(rfam_acc, index_ali) DO
UPDATE SET index_small_ali=excluded.index_small_ali, cm_coord=excluded.cm_coord, freq_A=excluded.freq_A, freq_C=excluded.freq_C, freq_G=excluded.freq_G, freq_U=excluded.freq_U,
freq_other=excluded.freq_other,
gap_percent=excluded.gap_percent, consensus=excluded.consensus, cons_sec_struct=excluded.cons_sec_struct;""", many=True, data=data)
# Add an unknown values column, with index_ali 0 (for nucleotides unsolved in 3D giving a gap '-' but found facing letter in the alignment)
sql_execute(conn, f"""INSERT OR IGNORE INTO align_column (rfam_acc, index_ali, index_small_ali, cm_coord, freq_A, freq_C, freq_G, freq_U, freq_other,
gap_percent, consensus, cons_sec_struct)
VALUES (?, 0, 0, NULL, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, '-', NULL);""", data=(f,))
# Save the number of "used columns" to table family ( = the length of the alignment if it was composed only of the RNANet chains)
sql_execute(conn, f"UPDATE family SET ali_filtered_len = ? WHERE rfam_acc = ?;", data=(len(columns_to_save), f))
conn.close()
##########################################################################################
# Saving the filtered alignement with only the saved positions
##########################################################################################
setproctitle(f"RNAnet.py work_pssm_remap({f}) filtering alignment")
# filter the alignment
names = [ x.id for x in align if '[' in x.id ]
align = align[-len(names):]
filtered_alignment = align[:, 1:1] # all the lines, but no columns
for p in columns:
filtered_alignment += align[:, p-1:p] # save columns one by one
# write it to file in both STK and FASTA formats (STK required for distance matrices in statistics)
with open(path_to_seq_data+f"/realigned/{f}_3d_only.stk", "w") as only_3d:
try:
only_3d.write(format(filtered_alignment, "stockholm"))
except ValueError as e:
warn(e)
with open(path_to_seq_data+f"/realigned/{f}_3d_only.afa", "w") as only_3d:
try:
only_3d.write(format(filtered_alignment, "fasta"))
except ValueError as e:
warn(e)
setproctitle(f"RNAnet.py work_pssm_remap({f}) Potts model, DCA")
if len(filtered_alignment) < 20:
# The 3D-only alignment is not big enough for us to compute PyDCA features on it.
# We'll use the large one.
del align
del filtered_alignment
align = read(path_to_seq_data + f"realigned/{f}++.afa")
filtered_alignment = align[:, 1:1] # all the lines, but no columns
for p in columns:
filtered_alignment += align[:, p-1:p] # save columns one by one
work_save_pydca(f, filtered_alignment)
setproctitle(f"RNAnet.py work_pssm_remap({f}) finished")
idxQueue.put(thr_idx) # replace the thread index in the queue
return 0
@trace_unhandled_exceptions
def work_save(c, homology=True):
setproctitle(f"RNAnet.py work_save({c.chain_label})")
conn = sqlite3.connect(runDir + "/results/RNANet.db", timeout=15.0)
conn.execute('pragma journal_mode=wal')
if homology:
df = pd.read_sql_query(f"""
SELECT index_chain, cm_coord, index_small_ali, old_nt_resnum, nt_position, nt_name, nt_code, nt_align_code,
is_A, is_C, is_G, is_U, is_other, freq_A, freq_C, freq_G, freq_U, freq_other,
gap_percent, consensus, cons_sec_struct, dbn, paired, nb_interact, pair_type_LW, pair_type_DSSR,
alpha, beta, gamma, delta, epsilon, zeta, epsilon_zeta, chi, bb_type, glyco_bond, form, ssZp, Dp,
eta, theta, eta_prime, theta_prime, eta_base, theta_base,
v0, v1, v2, v3, v4, amplitude, phase_angle, puckering FROM
(SELECT chain_id, rfam_acc from chain WHERE chain_id = {c.db_chain_id})
NATURAL JOIN re_mapping
NATURAL JOIN nucleotide
NATURAL JOIN align_column;""",
conn)
filename = path_to_3D_data + "datapoints/" + c.chain_label + '.' + c.mapping.rfam_acc
else:
df = pd.read_sql_query(f"""
SELECT index_chain, old_nt_resnum, nt_position, nt_name, nt_code, nt_align_code,
is_A, is_C, is_G, is_U, is_other, dbn,
paired, nb_interact, pair_type_LW, pair_type_DSSR, alpha, beta, gamma, delta, epsilon, zeta, epsilon_zeta,
chi, bb_type, glyco_bond, form, ssZp, Dp, eta, theta, eta_prime, theta_prime, eta_base, theta_base,
v0, v1, v2, v3, v4, amplitude, phase_angle, puckering FROM
nucleotide WHERE chain_id = {c.db_chain_id} ORDER BY index_chain ASC;""",
conn)
filename = path_to_3D_data + "datapoints/" + c.chain_label
conn.close()
df.to_csv(filename, float_format="%.2f", index=False)
# =========================== Main function =============================
if __name__ == "__main__":
fileDir = os.path.dirname(os.path.realpath(__file__))
ncores = read_cpu_number()
pp = Pipeline()
pp.process_options()
print(f"> Running {python_executable} on {ncores} CPU cores in folder {runDir}.")
# Prepare folders
os.makedirs(runDir + "/results", exist_ok=True)
os.makedirs(runDir + "/data", exist_ok=True)
subprocess.run(["rm", "-f", runDir+"/errors.txt"])
# Check existence of the database, or create it
with sqlite3.connect(runDir + '/results/RNANet.db') as conn:
sql_define_tables(conn)
print("> Storing results into", runDir + "/results/RNANet.db")
# compute an update compared to what is in the table "chain" (comparison on structure_id + chain_name + rfam_acc).
# If --all was passed, all the structures are kept.
# Fills pp.update with Chain() objects.
pp.list_available_mappings()
# ===========================================================================
# 3D information
# ===========================================================================
# Download and annotate new RNA 3D chains (Chain objects in pp.update)
# If the original cif file and/or the Json DSSR annotation file already exist, they are not redownloaded/recomputed.
pp.dl_and_annotate(coeff_ncores=0.5)
print("Here we go.")
# At this point, the structure table is up to date.
# Now save the DSSR annotations to the database.
# Extract the 3D chains to separate structure files if asked with --extract.
pp.build_chains(coeff_ncores=1.0)
if len(pp.to_retry):
# Redownload and re-annotate
print("> Retrying to annotate some structures which just failed.", flush=True)
pp.dl_and_annotate(retry=True, coeff_ncores=0.3) #
pp.build_chains(retry=True, coeff_ncores=0.5) # Use half the cores to reduce required amount of memory
print(f"> Loaded {len(pp.loaded_chains)} RNA chains ({len(pp.update) - len(pp.loaded_chains)} ignored/errors).")
if len(no_nts_set):
print(f"Among errors, {len(no_nts_set)} structures seem to contain RNA chains without defined nucleotides:", no_nts_set, flush=True)
if len(weird_mappings):
print(f"{len(weird_mappings)} mappings to Rfam were taken as absolute positions instead of residue numbers:", weird_mappings, flush=True)
if pp.HOMOLOGY and pp.SELECT_ONLY is None:
pp.checkpoint_save_chains()
# At this point, structure, chain and nucleotide tables of the database are up to date.
# (Modulo some statistics computed by statistics.py)
# ===========================================================================
# Homology information
# ===========================================================================
if pp.HOMOLOGY:
if pp.SELECT_ONLY is None:
# If your job failed, you can comment all the "3D information" part and start from here.
pp.checkpoint_load_chains()
# Get the list of Rfam families found in the update
rfam_acc_to_download = {}
for c in pp.loaded_chains:
if c.mapping.rfam_acc not in rfam_acc_to_download.keys():
rfam_acc_to_download[c.mapping.rfam_acc] = [c]
else:
rfam_acc_to_download[c.mapping.rfam_acc].append(c)
print(f"> Identified {len(rfam_acc_to_download.keys())} families to update and re-align with the crystals' sequences")
pp.fam_list = sorted(rfam_acc_to_download.keys())
if len(pp.fam_list):