statistics.py
136 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
#!/usr/bin/python3
# RNANet statistics
# Developed by Louis Becquey, Khodor Hannoush & Aglaé Tabot, 2019-2021
# This file computes additional statistics over the produced dataset.
# Run this file if you want the base counts, pair-type counts, identity percents, etc
# in the database.
import getopt, os, pickle, sqlite3, shlex, subprocess, sys, warnings
import numpy as np
import pandas as pd
import threading as th
import scipy.stats as st
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.patches as mpatches
import scipy.cluster.hierarchy as sch
import sklearn
import json
import pickle
import Bio
from scipy.spatial.distance import squareform
from mpl_toolkits.mplot3d import axes3d
from Bio import AlignIO, SeqIO
from Bio.PDB.MMCIFParser import MMCIFParser
from Bio.PDB.vectors import Vector, calc_angle, calc_dihedral
from functools import partial
from multiprocessing import Pool, Manager
from os import path
from tqdm import tqdm
from collections import Counter
from setproctitle import setproctitle
from RNAnet import Job, read_cpu_number, sql_ask_database, sql_execute, warn, notify, init_worker, trace_unhandled_exceptions
from sklearn.mixture import GaussianMixture
import warnings
from pandas.core.common import SettingWithCopyWarning
np.set_printoptions(threshold=sys.maxsize, linewidth=np.inf, precision=8)
path_to_3D_data = "tobedefinedbyoptions"
path_to_seq_data = "tobedefinedbyoptions"
runDir = os.getcwd()
res_thr = 20.0 # default: all structures
LSU_set = ("RF00002", "RF02540", "RF02541", "RF02543", "RF02546") # From Rfam CLAN 00112
SSU_set = ("RF00177", "RF02542", "RF02545", "RF01959", "RF01960") # From Rfam CLAN 00111
@trace_unhandled_exceptions
def reproduce_wadley_results(carbon=4, show=False, sd_range=(1,4), res=2.0):
"""
Plot the joint distribution of pseudotorsion angles, in a Ramachandran-style graph.
See Wadley & Pyle (2007).
Only unique unmapped chains with resolution < res argument are considered.
Arguments:
carbon: 1 or 4, use C4' (eta and theta) or C1' (eta_prime and theta_prime)
show: True or False, call plt.show() at this end or not
sd_range: tuple, set values below avg + sd_range[0] * stdev to 0,
and values above avg + sd_range[1] * stdev to avg + sd_range[1] * stdev.
This removes noise and cuts too high peaks, to clearly see the clusters.
res: Minimal resolution (maximal resolution value, actually) of the structure to
consider its nucleotides.
"""
os.makedirs(runDir + "/results/figures/wadley_plots/", exist_ok=True)
if carbon == 4:
angle = "eta"
xlabel = "$\\eta=C_4'^{i-1}-P^i-C_4'^i-P^{i+1}$"
ylabel = "$\\theta=P^i-C_4'^i-P^{i+1}-C_4'^{i+1}$"
elif carbon == 1:
angle = "eta_prime"
xlabel = "$\\eta'=C_1'^{i-1}-P^i-C_1'^i-P^{i+1}$"
ylabel = "$\\theta'=P^i-C_1'^i-P^{i+1}-C_1'^{i+1}$"
else:
exit("You overestimate my capabilities !")
if not path.isfile(runDir + f"/data/wadley_kernel_{angle}_{res}A.npz"):
# Get a worker number to position the progress bar
global idxQueue
thr_idx = idxQueue.get()
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} reproduce_wadley_results(carbon={carbon})")
pbar = tqdm(total=2, desc=f"Worker {thr_idx+1}: eta/theta C{carbon} kernels", unit="kernel", position=thr_idx+1, leave=False)
# Extract the angle values of c2'-endo and c3'-endo nucleotides
with sqlite3.connect(runDir + "/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal')
df = pd.read_sql(f"""SELECT {angle}, th{angle}
FROM (
SELECT chain_id FROM chain JOIN structure ON chain.structure_id = structure.pdb_id
WHERE chain.rfam_acc = 'unmappd' AND structure.resolution <= {res} AND issue = 0
) AS c NATURAL JOIN nucleotide
WHERE puckering="C2'-endo"
AND {angle} IS NOT NULL
AND th{angle} IS NOT NULL;""", conn)
c2_endo_etas = df[angle].values.tolist()
c2_endo_thetas = df["th"+angle].values.tolist()
df = pd.read_sql(f"""SELECT {angle}, th{angle}
FROM (
SELECT chain_id FROM chain JOIN structure ON chain.structure_id = structure.pdb_id
WHERE chain.rfam_acc = 'unmappd' AND structure.resolution <= {res} AND issue = 0
) AS c NATURAL JOIN nucleotide
WHERE form = '.'
AND puckering="C3'-endo"
AND {angle} IS NOT NULL
AND th{angle} IS NOT NULL;""", conn)
c3_endo_etas = df[angle].values.tolist()
c3_endo_thetas = df["th"+angle].values.tolist()
# Create arrays with (x,y) coordinates of the points
values_c3 = np.vstack([c3_endo_etas, c3_endo_thetas])
values_c2 = np.vstack([c2_endo_etas, c2_endo_thetas])
# Approximate the Densité by a gaussian kernel
kernel_c3 = st.gaussian_kde(values_c3)
kernel_c2 = st.gaussian_kde(values_c2)
# Create 100x100 regular (x,y,z) values for the plot
xx, yy = np.mgrid[0:2*np.pi:100j, 0:2*np.pi:100j]
positions = np.vstack([xx.ravel(), yy.ravel()])
f_c3 = np.reshape(kernel_c3(positions).T, xx.shape)
pbar.update(1)
f_c2 = np.reshape(kernel_c2(positions).T, xx.shape)
pbar.update(1)
# Save the data to an archive for later use without the need to recompute
np.savez(runDir + f"/data/wadley_kernel_{angle}_{res}A.npz",
c3_endo_e=c3_endo_etas, c3_endo_t=c3_endo_thetas,
c2_endo_e=c2_endo_etas, c2_endo_t=c2_endo_thetas,
kernel_c3=f_c3, kernel_c2=f_c2)
pbar.close()
idxQueue.put(thr_idx)
else:
setproctitle(f"RNANet statistics.py reproduce_wadley_results(carbon={carbon})")
f = np.load(runDir + f"/data/wadley_kernel_{angle}_{res}A.npz")
c2_endo_etas = f["c2_endo_e"]
c3_endo_etas = f["c3_endo_e"]
c2_endo_thetas = f["c2_endo_t"]
c3_endo_thetas = f["c3_endo_t"]
f_c3 = f["kernel_c3"]
f_c2 = f["kernel_c2"]
xx, yy = np.mgrid[0:2*np.pi:100j, 0:2*np.pi:100j]
# notify(f"Kernel computed for {angle}/th{angle} (or loaded from file).")
# exact counts:
hist_c2, xedges, yedges = np.histogram2d(c2_endo_etas, c2_endo_thetas, bins=int(2*np.pi/0.1),
range=[[0, 2*np.pi], [0, 2*np.pi]])
hist_c3, xedges, yedges = np.histogram2d(c3_endo_etas, c3_endo_thetas, bins=int(2*np.pi/0.1),
range=[[0, 2*np.pi], [0, 2*np.pi]])
cmap = cm.get_cmap("jet")
color_values = cmap(hist_c3.ravel()/hist_c3.max())
for x, y, hist, f, l in zip( (c3_endo_etas, c2_endo_etas),
(c3_endo_thetas, c2_endo_thetas),
(hist_c3, hist_c2),
(f_c3, f_c2), ("c3","c2")):
# cut hist and kernel
hist_sup_thr = hist.mean() + sd_range[1]*hist.std()
hist_cut = np.where( hist > hist_sup_thr, hist_sup_thr, hist)
f_sup_thr = f.mean() + sd_range[1]*f.std()
f_low_thr = f.mean() + sd_range[0]*f.std()
f_cut = np.where(f > f_sup_thr, f_sup_thr, f)
f_cut = np.where(f_cut < f_low_thr, 0, f_cut)
levels = [ f.mean()+f.std(), f.mean()+2*f.std(), f.mean()+4*f.std()]
# histogram:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
xpos, ypos = np.meshgrid(xedges[:-1], yedges[:-1], indexing="ij")
ax.bar3d(xpos.ravel(), ypos.ravel(), 0.0, 0.09, 0.09, hist_cut.ravel(), color=color_values, zorder="max")
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
fig.savefig(runDir + f"/results/figures/wadley_plots/wadley_hist_{angle}_{l}_{res}A.png")
if show:
fig.show()
plt.close()
# Smoothed joint distribution
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(xx, yy, f_cut, cmap=cm.get_cmap("coolwarm"), linewidth=0, antialiased=True)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
fig.savefig(runDir + f"/results/figures/wadley_plots/wadley_distrib_{angle}_{l}_{res}A.png")
if show:
fig.show()
plt.close()
# 2D Wadley plot
fig = plt.figure(figsize=(5,5))
ax = fig.gca()
ax.scatter(x, y, s=1, alpha=0.1)
ax.contourf(xx, yy, f, alpha=0.5, cmap=cm.get_cmap("coolwarm"), levels=levels, extend="max")
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
fig.savefig(runDir + f"/results/figures/wadley_plots/wadley_{angle}_{l}_{res}A.png")
if show:
fig.show()
plt.close()
setproctitle(f"RNANet statistics.py reproduce_wadley_results(carbon={carbon}) finished")
# print(f"[{worker_nbr}]\tComputed joint distribution of angles (C{carbon}) and saved the figures.")
@trace_unhandled_exceptions
def stats_len():
"""Plots statistics on chain lengths in RNA families.
Uses all chains mapped to a family including copies, inferred or not.
REQUIRES tables chain, nucleotide up to date.
"""
setproctitle(f"RNANet statistics.py stats_len({res_thr})")
# Get a worker number to position the progress bar
global idxQueue
thr_idx = idxQueue.get()
cols = []
lengths = []
for f in tqdm(famlist, position=thr_idx+1, desc=f"Worker {thr_idx+1}: Average chain lengths", unit="family", leave=False):
# Define a color for that family in the plot
if f in LSU_set:
cols.append("red") # LSU
elif f in SSU_set:
cols.append("blue") # SSU
elif f in ["RF00001"]:
cols.append("green")
elif f in ["RF00005"]:
cols.append("orange")
else:
cols.append("grey")
# Get the lengths of chains
with sqlite3.connect(runDir + "/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal')
l = [ x[0] for x in sql_ask_database(conn, f"""SELECT COUNT(index_chain)
FROM (
SELECT chain_id
FROM chain JOIN structure ON chain.structure_id = structure.pdb_id
WHERE rfam_acc='{f}' AND resolution <= {res_thr}
) NATURAL JOIN nucleotide
GROUP BY chain_id;""", warn_every=0) ]
lengths.append(l) # list of chain lengths from the family
# Plot the figure
fig = plt.figure(figsize=(10,3))
ax = fig.gca()
ax.hist(lengths, bins=100, stacked=True, log=True, color=cols, label=famlist)
ax.set_xlabel("Sequence length (nucleotides)", fontsize=8)
ax.set_ylabel("Number of 3D chains", fontsize=8)
ax.set_xlim(left=-150)
ax.tick_params(axis='both', which='both', labelsize=8)
fig.tight_layout()
# Draw the legend
fig.subplots_adjust(right=0.78)
filtered_handles = [mpatches.Patch(color='red'), mpatches.Patch(color='white'), mpatches.Patch(color='white'), mpatches.Patch(color='white'),
mpatches.Patch(color='blue'), mpatches.Patch(color='white'), mpatches.Patch(color='white'),
mpatches.Patch(color='green'), mpatches.Patch(color='white'),
mpatches.Patch(color='orange'), mpatches.Patch(color='white'),
mpatches.Patch(color='grey')]
filtered_labels = ['Large Ribosomal Subunits', '(RF00002, RF02540,', 'RF02541, RF02543,', 'RF02546)',
'Small Ribosomal Subunits','(RF01960, RF00177,', 'RF02545)',
'5S rRNA', '(RF00001)',
'tRNA', '(RF00005)',
'Other']
ax.legend(filtered_handles, filtered_labels, loc='right',
ncol=1, fontsize='small', bbox_to_anchor=(1.3, 0.5))
# Save the figure
fig.savefig(runDir + f"/results/figures/lengths_{res_thr}A.png")
idxQueue.put(thr_idx) # replace the thread index in the queue
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} finished")
# notify("Computed sequence length statistics and saved the figure.")
def format_percentage(tot, x):
if not tot:
return '0 %'
x = 100*x/tot
if x >= 0.01:
x = "%.2f" % x
elif x == 0:
return "0 %"
else:
x = "<.01"
return x + '%'
@trace_unhandled_exceptions
def stats_freq():
"""Computes base frequencies in all RNA families.
Uses all chains mapped to a family including copies, inferred or not.
Outputs results/frequencies.csv
REQUIRES tables chain, nucleotide up to date."""
# Get a worker number to position the progress bar
global idxQueue
thr_idx = idxQueue.get()
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} stats_freq()")
# Initialize a Counter object for each family
freqs = {}
for f in famlist:
freqs[f] = Counter()
# List all nt_names happening within a RNA family and store the counts in the Counter
for f in tqdm(famlist, position=thr_idx+1, desc=f"Worker {thr_idx+1}: Base frequencies", unit="family", leave=False):
with sqlite3.connect(runDir + "/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal')
counts = dict(sql_ask_database(conn, f"SELECT nt_name, COUNT(nt_name) FROM (SELECT chain_id from chain WHERE rfam_acc='{f}') NATURAL JOIN nucleotide GROUP BY nt_name;", warn_every=0))
freqs[f].update(counts)
# Create a pandas DataFrame, and save it to CSV.
df = pd.DataFrame()
for f in tqdm(famlist, position=thr_idx+1, desc=f"Worker {thr_idx+1}: Base frequencies", unit="family", leave=False):
tot = sum(freqs[f].values())
df = pd.concat([ df, pd.DataFrame([[ format_percentage(tot, x) for x in freqs[f].values() ]], columns=list(freqs[f]), index=[f]) ])
df = df.fillna(0)
df.to_csv(runDir + "/results/frequencies.csv")
idxQueue.put(thr_idx) # replace the thread index in the queue
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} finished")
# notify("Saved nucleotide frequencies to CSV file.")
@trace_unhandled_exceptions
def parallel_stats_pairs(f):
"""Counts occurrences of intra-chain base-pair types in one RNA family
REQUIRES tables chain, nucleotide up-to-date."""
if path.isfile(runDir + "/data/"+f+"_pairs.csv") and path.isfile(runDir + "/data/"+f+"_counts.csv"):
return
# Get a worker number to position the progress bar
global idxQueue
thr_idx = idxQueue.get()
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} p_stats_pairs({f})")
chain_id_list = mappings_list[f]
data = []
sqldata = []
for cid in tqdm(chain_id_list, position=thr_idx+1, desc=f"Worker {thr_idx+1}: {f} basepair types", unit="chain",leave=False):
with sqlite3.connect(runDir + "/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal')
# Get comma separated lists of basepairs per nucleotide
interactions = pd.DataFrame(
sql_ask_database(conn, f"SELECT nt_code as nt1, index_chain, paired, pair_type_LW FROM nucleotide WHERE chain_id='{cid}';"),
columns = ["nt1", "index_chain", "paired", "pair_type_LW"]
)
# expand the comma-separated lists in real lists
expanded_list = pd.concat([ pd.DataFrame({ 'nt1':[ row["nt1"] for x in row["paired"].split(',') ],
'index_chain':[ row['index_chain'] for x in row["paired"].split(',') ],
'paired':row['paired'].split(','),
'pair_type_LW':row['pair_type_LW'].split(',')
})
for _, row in interactions.iterrows()
]).reset_index(drop=True)
# Add second nucleotide
nt2 = []
for _, row in expanded_list.iterrows():
if row.paired in ['', '0']:
nt2.append('')
else:
try:
n = expanded_list[expanded_list.index_chain == int(row.paired)].nt1.tolist()[0]
nt2.append(n)
except IndexError:
print(cid, flush=True)
try:
expanded_list["nt2"] = nt2
except ValueError:
print(cid, flush=True)
print(expanded_list, flush=True)
return 0,0
# keep only intra-chain interactions
expanded_list = expanded_list[ ~expanded_list.paired.isin(['0','']) ]
expanded_list["nts"] = expanded_list["nt1"] + expanded_list["nt2"]
# Get basepair type
expanded_list["basepair"] = np.where(expanded_list.nts.isin(["AU","UA"]), "AU",
np.where(expanded_list.nts.isin(["GC","CG"]), "GC",
np.where(expanded_list.nts.isin(["GU","UG"]), "Wobble","Other")
)
)
expanded_list = expanded_list[["basepair", "pair_type_LW"]]
# Update the database
vlcnts = expanded_list.pair_type_LW.value_counts()
sqldata.append( ( vlcnts.at["cWW"]/2 if "cWW" in vlcnts.index else 0,
vlcnts.at["cWH"] if "cWH" in vlcnts.index else 0,
vlcnts.at["cWS"] if "cWS" in vlcnts.index else 0,
vlcnts.at["cHH"]/2 if "cHH" in vlcnts.index else 0,
vlcnts.at["cHS"] if "cHS" in vlcnts.index else 0,
vlcnts.at["cSS"]/2 if "cSS" in vlcnts.index else 0,
vlcnts.at["tWW"]/2 if "tWW" in vlcnts.index else 0,
vlcnts.at["tWH"] if "tWH" in vlcnts.index else 0,
vlcnts.at["tWS"] if "tWS" in vlcnts.index else 0,
vlcnts.at["tHH"]/2 if "tHH" in vlcnts.index else 0,
vlcnts.at["tHS"] if "tHS" in vlcnts.index else 0,
vlcnts.at["tSS"]/2 if "tSS" in vlcnts.index else 0,
int(sum(vlcnts.loc[[ str(x) for x in vlcnts.index if "." in str(x)]])/2),
cid) )
data.append(expanded_list)
# Update the database
with sqlite3.connect(runDir + "/results/RNANet.db", isolation_level=None) as conn:
conn.execute('pragma journal_mode=wal') # Allow multiple other readers to ask things while we execute this writing query
sql_execute(conn, """UPDATE chain SET pair_count_cWW = ?, pair_count_cWH = ?, pair_count_cWS = ?, pair_count_cHH = ?,
pair_count_cHS = ?, pair_count_cSS = ?, pair_count_tWW = ?, pair_count_tWH = ?, pair_count_tWS = ?,
pair_count_tHH = ?, pair_count_tHS = ?, pair_count_tSS = ?, pair_count_other = ? WHERE chain_id = ?;""", many=True, data=sqldata, warn_every=0)
# merge all the dataframes from all chains of the family
expanded_list = pd.concat(data)
# Count each pair type
vcnts = expanded_list.pair_type_LW.value_counts()
# Add these new counts to the family's counter
cnt = Counter()
cnt.update(dict(vcnts))
# Create an output DataFrame
f_df = pd.DataFrame([[ x for x in cnt.values() ]], columns=list(cnt), index=[f])
f_df.to_csv(runDir + f"/data/{f}_counts.csv")
expanded_list.to_csv(runDir + f"/data/{f}_pairs.csv")
idxQueue.put(thr_idx) # replace the thread index in the queue
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} finished")
@trace_unhandled_exceptions
def to_id_matrix(f):
"""
Runs esl-alipid on the filtered alignment to get an identity matrix.
"""
if path.isfile("data/"+f+".npy"):
return 0
# Get a worker number to position the progress bar
global idxQueue
thr_idx = idxQueue.get()
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} to_id_matrix({f})")
if not path.isfile(f"{path_to_seq_data}/realigned/{f}_3d_only.stk"):
warn(f"File not found: {path_to_seq_data}/realigned/{f}_3d_only.stk")
align = AlignIO.read(f"{path_to_seq_data}/realigned/{f}_3d_only.stk", "stockholm")
names = [ x.id for x in align if '[' in x.id ]
del align
pbar = tqdm(total = len(names)*(len(names)-1)*0.5, position=thr_idx+1, desc=f"Worker {thr_idx+1}: {f} idty matrix", unit="comparisons", leave=False)
pbar.update(0)
# Prepare the job
process = subprocess.Popen(shlex.split(f"esl-alipid --rna --noheader --informat stockholm {path_to_seq_data}/realigned/{f}_3d_only.stk"), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
id_matrix = np.zeros((len(names), len(names)))
cnt = 0
while not cnt or process.poll() is None:
output = process.stdout.read()
if output:
lines = output.strip().split(b'\n')
for l in lines:
cnt += 1
line = l.split()
s1 = line[0].decode('utf-8')
s2 = line[1].decode('utf-8')
score = line[2].decode('utf-8')
id1 = names.index(s1)
id2 = names.index(s2)
id_matrix[id1, id2] = float(score)
pbar.update(1)
if cnt != len(names)*(len(names)-1)*0.5:
warn(f"{f} got {cnt} updates on {len(names)*(len(names)-1)*0.5}")
if process.poll() != 0:
l = process.stderr.read().strip().split(b'\n')
warn("\n".join([ line.decode('utf-8') for line in l ]))
pbar.close()
np.save("data/"+f+".npy", id_matrix)
idxQueue.put(thr_idx) # replace the thread index in the queue
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} finished")
return 0
@trace_unhandled_exceptions
def seq_idty():
"""Computes identity matrices for each of the RNA families.
REQUIRES temporary results files in data/*.npy
REQUIRES tables chain, family up to date."""
# load distance matrices
fams_to_plot = [ f for f in famlist if f not in ignored ]
fam_arrays = []
for f in fams_to_plot:
if path.isfile("data/"+f+".npy"):
fam_arrays.append(np.load("data/"+f+".npy") / 100.0) # normalize percentages in [0,1]
else:
warn("data/"+f+".npy not found !")
fam_arrays.append(np.array([]))
# Update database with identity percentages
conn = sqlite3.connect(runDir + "/results/RNANet.db")
conn.execute('pragma journal_mode=wal')
for f, D in zip(fams_to_plot, fam_arrays):
if not len(D): continue
if D.shape[0] > 1:
a = np.sum(D) * 2 / D.shape[0] / (D.shape[0] - 1) # SUM(D) / (n(n-1)/2)
else:
a = D[0][0]
conn.execute(f"UPDATE family SET idty_percent = {round(float(a),2)} WHERE rfam_acc = '{f}';")
conn.commit()
conn.close()
# Plots plots plots
fig, axs = plt.subplots(4,17, figsize=(17,5.75))
axs = axs.ravel()
[axi.set_axis_off() for axi in axs]
im = "" # Just to declare the variable, it will be set in the loop
for f, D, ax in zip(fams_to_plot, fam_arrays, axs):
D = D + D.T # Copy the lower triangle to upper, to get a symetrical matrix
if D.shape[0] > 2: # Cluster only if there is more than 2 sequences to organize
D = 1.0 - D
np.fill_diagonal(D, 0.0)
condensedD = squareform(D)
# Compute basic dendrogram by Ward's method
Y = sch.linkage(condensedD, method='ward')
Z = sch.dendrogram(Y, orientation='left', no_plot=True)
# Reorganize rows and cols
idx1 = Z['leaves']
D = D[idx1[::-1],:]
D = D[:,idx1[::-1]]
D = 1.0 - D
elif D.shape[0] == 2:
np.fill_diagonal(D, 1.0) # the diagonal has been ignored until now
ax.text(np.floor(D.shape[0]/2.0)-(0.5 if not D.shape[0]%2 else 0), -0.5, f + "\n(" + str(D.shape[0]) + " chains)",
fontsize=9, horizontalalignment = 'center', verticalalignment='bottom')
im = ax.matshow(D, vmin=0, vmax=1)
fig.tight_layout()
fig.subplots_adjust(hspace=0.3, wspace=0.1)
fig.colorbar(im, ax=axs[-4], shrink=0.8)
fig.savefig(runDir + f"/results/figures/distances_{res_thr}.png")
print("> Computed all identity matrices and saved the figure.", flush=True)
@trace_unhandled_exceptions
def stats_pairs():
"""Counts occurrences of intra-chain base-pair types in RNA families
Creates a temporary results file in data/pair_counts.csv, and a results file in results/pairings.csv.
REQUIRES tables chain, nucleotide up-to-date."""
setproctitle(f"RNANet statistics.py stats_pairs()")
def line_format(family_data):
return family_data.apply(partial(format_percentage, sum(family_data)))
if not path.isfile("data/pair_counts_{res_thr}.csv"):
results = []
allpairs = []
for f in famlist:
newpairs = pd.read_csv(runDir + f"/data/{f}_pairs.csv", index_col=0)
fam_df = pd.read_csv(runDir + f"/data/{f}_counts.csv", index_col=0)
results.append(fam_df)
allpairs.append(newpairs)
subprocess.run(["rm", "-f", runDir + f"/data/{f}_pairs.csv"])
subprocess.run(["rm", "-f", runDir + f"/data/{f}_counts.csv"])
all_pairs = pd.concat(allpairs)
df = pd.concat(results).fillna(0)
df.to_csv(runDir + f"/data/pair_counts_{res_thr}.csv")
all_pairs.to_csv(runDir + f"/data/all_pairs_{res_thr}.csv")
else:
df = pd.read_csv(runDir + f"/data/pair_counts_{res_thr}.csv", index_col=0)
all_pairs = pd.read_csv(runDir + f"/data/all_pairs_{res_thr}.csv", index_col=0)
crosstab = pd.crosstab(all_pairs.pair_type_LW, all_pairs.basepair)
col_list = [ x for x in df.columns if '.' in x ]
# Remove not very well defined pair types (not in the 12 LW types)
df['other'] = df[col_list].sum(axis=1)
df.drop(col_list, axis=1, inplace=True)
crosstab = crosstab.append(crosstab.loc[col_list].sum(axis=0).rename("non-LW"))
# drop duplicate types
# The twelve Leontis-Westhof types are
# cWW cWH cWS cHH cHS cSS (do not count cHW cSW and cSH, they are the same as their opposites)
# tWW tWH tWS tHH tHS tSS (do not count tHW tSW and tSH, they are the same as their opposites)
df = df.drop([ x for x in [ "cHW", "tHW", "cSW", "tSW", "cHS", "tHS"] if x in df.columns], axis=1)
crosstab = crosstab.loc[[ x for x in ["cWW","cWH","cWS","cHH","cHS","cSS","tWW","tWH","tWS","tHH","tHS","tSS","non-LW"] if x in crosstab.index]]
df.loc[:,[x for x in ["cWW", "tWW", "cHH", "tHH", "cSS", "tSS", "other"] if x in df.columns] ] /= 2
crosstab.loc[["cWW", "tWW", "cHH", "tHH", "cSS", "tSS", "non-LW"]] /= 2
# Compute total row
total_series = df.sum(numeric_only=True).rename("TOTAL")
df = df.append(total_series)
# format as percentages
df = df.apply(line_format, axis=1)
# reorder columns
df.sort_values("TOTAL", axis=1, inplace=True, ascending=False)
crosstab = crosstab[["AU", "GC", "Wobble", "Other"]]
# Save to CSV
df.to_csv(runDir + "/results/pair_types.csv")
# Plot barplot of overall types
ax = crosstab.plot(figsize=(8,5), kind='bar', stacked=True, log=False, fontsize=13)
ax.set_ylabel("Number of observations (millions)", fontsize=13)
ax.set_xlabel(None)
plt.subplots_adjust(left=0.1, bottom=0.16, top=0.95, right=0.99)
plt.savefig(runDir + f"/results/figures/pairings_{res_thr}.png")
notify("Computed nucleotide statistics and saved CSV and PNG file.")
@trace_unhandled_exceptions
def per_chain_stats():
"""Computes per-chain frequencies and base-pair type counts.
REQUIRES tables chain, nucleotide up to date. """
setproctitle(f"RNANet statistics.py per_chain_stats()")
with sqlite3.connect(runDir + "/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal')
# Compute per-chain nucleotide frequencies
df = pd.read_sql("SELECT SUM(is_A) as A, SUM(is_C) AS C, SUM(is_G) AS G, SUM(is_U) AS U, SUM(is_other) AS O, chain_id FROM nucleotide GROUP BY chain_id;", conn)
df["total"] = pd.Series(df.A + df.C + df.G + df.U + df.O, dtype=np.float64)
df[['A','C','G','U','O']] = df[['A','C','G','U','O']].div(df.total, axis=0)
df = df.drop("total", axis=1)
# Set the values
sql_execute(conn, "UPDATE chain SET chain_freq_A = ?, chain_freq_C = ?, chain_freq_G = ?, chain_freq_U = ?, chain_freq_other = ? WHERE chain_id= ?;",
many=True, data=list(df.to_records(index=False)), warn_every=10)
print("> Updated the database with per-chain base frequencies", flush=True)
@trace_unhandled_exceptions
def general_stats():
"""
Number of structures as function of the resolution threshold
Number of Rfam families as function of the resolution threshold
"""
setproctitle(f"RNANet statistics.py general_stats()")
reqs = [
# unique unmapped chains with no issues
""" SELECT distinct pdb_id, chain_name, exp_method, resolution
FROM chain JOIN structure ON chain.structure_id = structure.pdb_id
WHERE rfam_acc = 'unmappd' AND ISSUE=0;""",
# unique mapped chains with no issues
""" SELECT distinct pdb_id, chain_name, exp_method, resolution
FROM chain JOIN structure ON chain.structure_id = structure.pdb_id
WHERE rfam_acc != 'unmappd' AND ISSUE=0;""",
# mapped chains with no issues
""" SELECT pdb_id, chain_name, inferred, rfam_acc, pdb_start, pdb_end, exp_method, resolution
FROM chain JOIN structure ON chain.structure_id = structure.pdb_id
WHERE rfam_acc != 'unmappd' AND ISSUE=0;""",
# mapped chains with no issues that are all inferred
""" SELECT DISTINCT pdb_id, c.chain_name, exp_method, resolution
FROM (
SELECT inferred, rfam_acc, pdb_start, pdb_end, chain.structure_id, chain.chain_name, r.redundancy, r.inf_redundancy
FROM chain
JOIN (SELECT structure_id, chain_name, COUNT(distinct rfam_acc) AS redundancy, SUM(inferred) AS inf_redundancy
FROM chain
WHERE rfam_acc != 'unmappd' AND issue=0
GROUP BY structure_id, chain_name
) AS r ON chain.structure_id=r.structure_id AND chain.chain_name = r.chain_name
WHERE r.redundancy=r.inf_redundancy AND rfam_acc != 'unmappd' and issue=0
) AS c
JOIN structure ON c.structure_id=structure.pdb_id;""",
# Number of mapped chains (not inferred)
"""SELECT count(*) FROM (SELECT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd' AND inferred = 0);""",
# Number of unique mapped chains (not inferred)
"""SELECT count(*) FROM (SELECT DISTINCT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd' AND inferred = 0);""",
# Number of mapped chains (inferred)
"""SELECT count(*) FROM (SELECT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd' AND inferred = 1);""",
# Number of unique mapped chains (inferred)
"""SELECT count(*) FROM (SELECT DISTINCT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd' AND inferred = 1);""",
# Number of mapped chains inferred once
"""SELECT count(*) FROM (
SELECT structure_id, chain_name, COUNT(DISTINCT rfam_acc) as c
FROM chain where rfam_acc!='unmappd' and inferred=1
GROUP BY structure_id, chain_name
) WHERE c=1;""",
# Number of mapped chains inferred twice
"""select count(*) from (
select structure_id, chain_name, count(distinct rfam_acc) as c
from chain where rfam_acc!='unmappd' and inferred=1
group by structure_id, chain_name
) where c=2;""",
# Number of mapped chains inferred 3 times or more
"""select count(*) from (
select structure_id, chain_name, count(distinct rfam_acc) as c
from chain where rfam_acc!='unmappd' and inferred=1
group by structure_id, chain_name
) where c>2;""",
# Number of chains both mapped with and without inferrence
""" SELECT COUNT(*) FROM (
SELECT structure_id, chain_name, sum(inferred) AS s, COUNT(rfam_acc) AS c
FROM chain
WHERE rfam_acc!='unmappd'
GROUP BY structure_id, chain_name
)
WHERE s < c AND s > 0;""",
# Number of mapped chains (total)
"""SELECT count(*) FROM (SELECT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd');""",
# Number of unique mapped chains
"""SELECT count(*) FROM (SELECT DISTINCT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd');""",
# Number of unmapped chains
"""SELECT count(*) FROM (SELECT structure_id, chain_name FROM chain WHERE rfam_acc = 'unmappd');""",
# Number of mapped chains without issues (not inferred)
"""SELECT count(*) FROM (SELECT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd' AND inferred = 0 AND issue = 0);""",
# Number of unique mapped chains without issues (not inferred)
"""SELECT count(*) FROM (SELECT DISTINCT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd' AND inferred = 0 AND issue = 0);""",
# Number of mapped chains without issues (inferred)
"""SELECT count(*) FROM (SELECT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd' AND inferred = 1 AND issue=0);""",
# Number of unique mapped chains without issues (inferred)
"""SELECT count(*) FROM (SELECT DISTINCT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd' AND inferred = 1 AND issue=0);""",
# Number of mapped chains without issues (total)
"""SELECT count(*) FROM (SELECT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd' AND issue=0);""",
# Number of unique mapped chains without issues
"""SELECT count(*) FROM (SELECT DISTINCT structure_id, chain_name FROM chain WHERE rfam_acc != 'unmappd' AND issue=0);""",
# Number of unmapped chains without issues
"""SELECT count(*) FROM (SELECT structure_id, chain_name FROM chain WHERE rfam_acc = 'unmappd' AND issue=0);"""
]
answers = []
with sqlite3.connect(runDir + "/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal')
for r in reqs:
answers.append(pd.read_sql(r, conn))
df_unique = answers[0]
df_mapped_unique = answers[1]
df_mapped_copies = answers[2]
df_inferred_only_unique = answers[3]
print()
print("> found", answers[4].iloc[0][0], f"chains ({answers[5].iloc[0][0]} unique chains) that are mapped thanks to Rfam. Removing chains with issues, only {answers[15].iloc[0][0]} ({answers[16].iloc[0][0]} unique)")
if answers[4].iloc[0][0] != answers[5].iloc[0][0]:
print("\t> This happens because different parts of the same chain can be mapped to different families.")
print("> found", answers[6].iloc[0][0], f"chains ({answers[7].iloc[0][0]} unique chains) that are mapped by inferrence. Removing chains with issues, only {answers[17].iloc[0][0]} ({answers[18].iloc[0][0]} unique).")
print("\t> ", answers[8].iloc[0][0], "chains are mapped only once,")
print("\t> ", answers[9].iloc[0][0], "are mapped to 2 families,")
print("\t> ", answers[10].iloc[0][0], "are mapped to 3 or more.")
print("> Among them,", answers[11].iloc[0][0], "chains are mapped both with families found on Rfam and by inferrence.")
if answers[11].iloc[0][0]:
print("\t> this is normal if you used option -f (--full-inference). Otherwise, there might be a problem.")
print("> TOTAL:", answers[12].iloc[0][0], f"chains ({answers[13].iloc[0][0]} unique chains) mapped to a family. Removing chains with issues, only {answers[19].iloc[0][0]} ({answers[20].iloc[0][0]} unique).")
print("> TOTAL:", answers[14].iloc[0][0], f"unmapped chains. Removing chains with issues, {answers[21].iloc[0][0]}.")
if answers[14].iloc[0][0]:
print("\t> this is normal if you used option --no-homology. Otherwise, there might be a problem.")
print()
##########################################
# plot N = f(resolution, exp_method)
##########################################
methods = df_unique.exp_method.unique()
fig, axs = plt.subplots(1+len(methods), 3, figsize=(15,5*(1+len(methods))), sharex=True)
df_unique.sort_values('resolution', inplace=True, ignore_index=True)
df_mapped_unique.sort_values('resolution', inplace=True, ignore_index=True)
df_inferred_only_unique.sort_values('resolution', inplace=True, ignore_index=True)
df_mapped_copies.sort_values('resolution', inplace=True, ignore_index=True)
max_res = max(df_unique.resolution)
max_structs = max(len(df_mapped_copies.index), len(df_unique.index))
colors = np.linspace(0,1,1+len(methods))
plt.xticks( np.arange(0, max_res+2, 2.0).tolist(), np.arange(0, max_res+2, 2.0).tolist() )
axs[0][0].grid(axis='y', ls='dotted', lw=1)
axs[0][0].hist(df_unique.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 1, colors[0], 1), label='distribution')
axs[0][0].hist(df_unique.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 0, colors[0], 0.5), cumulative=True, label='cumulative')
axs[0][0].text(0.95*max_res, 0.95*len(df_unique.resolution), "%d " % len(df_unique.resolution),
horizontalalignment='right', verticalalignment='top', fontsize=14)
axs[0][0].set_ylabel("ALL", fontsize=14)
axs[0][0].set_title("Number of unique RNA chains", fontsize=14)
axs[0][0].set_ylim((0, max_structs * 1.05))
axs[0][0].legend(loc="lower right", fontsize=14)
axs[0][1].grid(axis='y', ls='dotted', lw=1)
axs[0][1].set_yticklabels([])
axs[0][1].hist(df_mapped_unique.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 1, colors[0], 1), label='distribution')
axs[0][1].hist(df_mapped_unique.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 0, colors[0], 0.5), cumulative=True, label='cumulative')
axs[0][1].hist(df_inferred_only_unique.resolution, bins=np.arange(0, max_res, 0.5), fc=(0.2, 0, colors[0], 0.5), cumulative=True, label='only by inference')
axs[0][1].text(0.95*max_res, 0.95*len(df_mapped_unique.resolution), "%d " % len(df_mapped_unique.resolution),
horizontalalignment='right', verticalalignment='top', fontsize=14)
axs[0][1].set_title(r"Number of unique RNA chains\nmapped to $\geq 1$ family", fontsize=14)
axs[0][1].set_ylim((0, max_structs * 1.05))
axs[0][1].legend(loc="upper left", fontsize=14)
axs[0][2].grid(axis='y', ls='dotted', lw=1)
axs[0][2].set_yticklabels([])
axs[0][2].hist(df_mapped_copies.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 1, colors[0], 1), label='distribution')
axs[0][2].hist(df_mapped_copies.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 0, colors[0], 0.5), cumulative=True, label='cumulative')
axs[0][2].hist(df_mapped_copies[df_mapped_copies.inferred == 1].resolution, bins=np.arange(0, max_res, 0.5), fc=(0.2, 0, colors[0], 0.5), cumulative=True, label='inferred')
axs[0][2].text(0.95*max_res, 0.95*len(df_mapped_copies.resolution), "%d " % len(df_mapped_copies.resolution),
horizontalalignment='right', verticalalignment='top', fontsize=14)
axs[0][2].set_title("Number of RNA chains mapped to a\nfamily (with copies)", fontsize=14)
axs[0][2].legend(loc="upper left", fontsize=14)
axs[0][2].set_ylim((0, max_structs * 1.05))
for i,m in enumerate(methods):
df_unique_m = df_unique[df_unique.exp_method == m]
df_mapped_unique_m = df_mapped_unique[df_mapped_unique.exp_method == m]
df_inferred_only_unique_m = df_inferred_only_unique[df_inferred_only_unique.exp_method == m]
df_mapped_copies_m = df_mapped_copies[ df_mapped_copies.exp_method == m]
max_structs = max(len(df_mapped_copies_m.index), len(df_unique_m.index))
print("> found", max_structs, "structures with method", m, flush=True)
axs[1+i][0].grid(axis='y', ls='dotted', lw=1)
axs[1+i][0].hist(df_unique_m.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 1, colors[1+i], 1), label='distribution')
axs[1+i][0].hist(df_unique_m.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 0, colors[1+i], 0.5), cumulative=True, label='cumulative')
axs[1+i][0].text(0.95*max_res, 0.95*len(df_unique_m.resolution), "%d " % len(df_unique_m.resolution),
horizontalalignment='right', verticalalignment='top', fontsize=14)
axs[1+i][0].set_ylim((0, max_structs * 1.05))
axs[1+i][0].set_ylabel(m, fontsize=14)
axs[1+i][0].legend(loc="lower right", fontsize=14)
axs[1+i][1].grid(axis='y', ls='dotted', lw=1)
axs[1+i][1].set_yticklabels([])
axs[1+i][1].hist(df_mapped_unique_m.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 1, colors[1+i], 1), label='distribution')
axs[1+i][1].hist(df_mapped_unique_m.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 0, colors[1+i], 0.5), cumulative=True, label='cumulative')
axs[1+i][1].hist(df_inferred_only_unique_m.resolution, bins=np.arange(0, max_res, 0.5), fc=(0.2, 0, colors[1+i], 0.5), cumulative=True, label='only by inference')
axs[1+i][1].text(0.95*max_res, 0.95*len(df_mapped_unique_m.resolution), "%d " % len(df_mapped_unique_m.resolution),
horizontalalignment='right', verticalalignment='top', fontsize=14)
axs[1+i][1].set_ylim((0, max_structs * 1.05))
axs[1+i][1].legend(loc="upper left", fontsize=14)
axs[1+i][2].grid(axis='y', ls='dotted', lw=1)
axs[1+i][2].set_yticklabels([])
axs[1+i][2].hist(df_mapped_copies_m.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 1, colors[1+i], 1), label='distribution')
axs[1+i][2].hist(df_mapped_copies_m.resolution, bins=np.arange(0, max_res, 0.5), fc=(0, 0, colors[1+i], 0.5), cumulative=True, label='cumulative')
axs[1+i][2].hist(df_mapped_copies_m[df_mapped_copies_m.inferred == 1].resolution, bins=np.arange(0, max_res, 0.5), fc=(0.2, 0, colors[1+i], 0.5), cumulative=True, label='inferred')
axs[1+i][2].text(0.95*max_res, 0.95*len(df_mapped_copies_m.resolution), "%d " % len(df_mapped_copies_m.resolution),
horizontalalignment='right', verticalalignment='top', fontsize=14)
axs[1+i][2].set_ylim((0, max_structs * 1.05))
axs[1+i][2].legend(loc="upper left", fontsize=14)
axs[-1][0].set_xlabel("Structure resolution\n(Angströms, lower is better)", fontsize=14)
axs[-1][1].set_xlabel("Structure resolution\n(Angströms, lower is better)", fontsize=14)
axs[-1][2].set_xlabel("Structure resolution\n(Angströms, lower is better)", fontsize=14)
fig.suptitle("Number of RNA chains by experimental method and resolution", fontsize=16)
fig.subplots_adjust(left=0.07, right=0.98, wspace=0.05,
hspace=0.05, bottom=0.05, top=0.92)
fig.savefig(runDir + "/results/figures/resolutions.png")
plt.close()
##########################################
# plot Nfam = f(resolution, exp_method)
##########################################
df_mapped_copies['n_fam'] = [ len(df_mapped_copies.rfam_acc[:i+1].unique()) for i in range(len(df_mapped_copies.index)) ]
fig, axs = plt.subplots(1, 1+len(methods), figsize=(5*(1+len(methods)), 5))
max_res = max(df_mapped_copies.resolution)
max_fams = max(df_mapped_copies.n_fam)
colors = np.linspace(0,1,1+len(methods))
plt.xticks( np.arange(0, max_res+2, 2.0).tolist(), np.arange(0, max_res+2, 2.0).tolist() )
axs[0].grid(axis='y', ls='dotted', lw=1)
axs[0].plot(df_mapped_copies.resolution, df_mapped_copies.n_fam)
axs[0].text(0.95*max_res, 0.95*df_mapped_copies.n_fam.iloc[-1], "%d " % df_mapped_copies.n_fam.iloc[-1],
horizontalalignment='right', verticalalignment='top', fontsize=14)
axs[0].set_title("ALL", fontsize=14)
axs[0].set_xlabel("Structure resolution (Angströms)", fontsize=14)
axs[0].set_ylabel("Number of Rfam families", fontsize=14)
axs[0].set_ylim((0, max_res * 1.05))
axs[0].set_ylim((0, max_fams * 1.05))
for i,m in enumerate(methods):
df_mapped_copies_m = df_mapped_copies[ df_mapped_copies.exp_method == m].drop("n_fam", axis=1).copy()
df_mapped_copies_m['n_fam'] = [ len(df_mapped_copies_m.rfam_acc[:i+1].unique()) for i in range(len(df_mapped_copies_m.index)) ]
print(">", df_mapped_copies_m.n_fam.iloc[-1], "different RNA families have a 3D structure solved by", m)
axs[1+i].grid(axis='y', ls='dotted', lw=1)
axs[1+i].plot(df_mapped_copies_m.resolution, df_mapped_copies_m.n_fam, )
axs[1+i].text(0.95*max(df_mapped_copies_m.resolution), 0.95*df_mapped_copies_m.n_fam.iloc[-1], "%d " % df_mapped_copies_m.n_fam.iloc[-1],
horizontalalignment='right', verticalalignment='top', fontsize=14)
axs[1+i].set_xlim((0, max_res * 1.05))
axs[1+i].set_ylim((0, max_fams * 1.05))
axs[1+i].set_xlabel("Structure resolution (Angströms)", fontsize=14)
axs[1+i].set_title(m, fontsize=14)
axs[1+i].set_yticklabels([])
fig.suptitle("Number of RNA families used by experimental method and resolution", fontsize=16)
fig.subplots_adjust(left=0.05, right=0.98, wspace=0.05,
hspace=0.05, bottom=0.12, top=0.84)
fig.savefig(runDir + "/results/figures/Nfamilies.png")
plt.close()
def par_distance_matrix(filelist, f, label, cm_coords, consider_all_atoms, s):
# Identify the right 3D file
filename = ''
for file in filelist:
if file.startswith(s.id.split("RF")[0].replace('-', '').replace('[', '_').replace(']', '_')):
filename = path_to_3D_data + "rna_mapped_to_Rfam/" + file
break
if not len(filename):
return None, None, None
# Get the coordinates of every existing nt in the 3D file
try:
coordinates = nt_3d_centers(filename, consider_all_atoms)
if not len(coordinates):
# there is not nucleotides in the file, or no C1' atoms for example.
warn("No C1' atoms in " + filename)
return None, None, None
except FileNotFoundError:
return None, None, None
# Get the coordinates of every position in the alignment
nb_gap = 0
coordinates_with_gaps = []
for i, letter in enumerate(s.seq):
if letter in "-.":
nb_gap += 1
coordinates_with_gaps.append(np.nan)
else:
coordinates_with_gaps.append(coordinates[i - nb_gap])
# Build the pairwise distances
d = np.zeros((len(s.seq), len(s.seq)), dtype=np.float32)
for i in range(len(s.seq)):
for j in range(len(s.seq)):
if np.isnan(coordinates_with_gaps[i]).any() or np.isnan(coordinates_with_gaps[j]).any():
d[i,j] = np.NaN
else:
d[i,j] = get_euclidian_distance(coordinates_with_gaps[i], coordinates_with_gaps[j])
# Save the individual distance matrices
# if f not in LSU_set and f not in SSU_set:
np.savetxt(runDir + '/results/distance_matrices/' + f + '_'+ label + '/'+ s.id.strip("\'") + '.csv', d, delimiter=",", fmt="%.3f")
# For the average and sd, we want to consider only positions of the consensus model. This means:
# - Add empty space when we have deletions
# - skip measures that correspond to insertions
i = len(cm_coords)-1
while cm_coords[i] is None:
i -= 1
family_end = int(cm_coords[i])
i = 0
while cm_coords[i] is None:
i += 1
family_start = int(cm_coords[i])
# c = np.zeros((family_end, family_end), dtype=np.float32) # new matrix of size of the consensus model for the family
c = np.NaN * np.ones((family_end, family_end), dtype=np.float32)
# set to NaN zones that never exist in the 3D data
for i in range(family_start-1):
for j in range(i, family_end):
c[i,j] = np.NaN
c[j,i] = np.NaN
# copy the values ignoring insertions
for i in range(len(s.seq)):
if cm_coords[i] is None:
continue
for j in range(len(s.seq)):
if j >= len(cm_coords):
print(f"Issue with {s.id} mapped to {f} ({label}, {j}/{len(s.seq)}, {len(cm_coords)})")
if cm_coords[j] is None:
continue
c[int(cm_coords[i])-1, int(cm_coords[j])-1] = d[i,j]
# return the matrices counts, c, c^2
return 1-np.isnan(c).astype(int), np.nan_to_num(c), np.nan_to_num(c*c)
@trace_unhandled_exceptions
def get_avg_std_distance_matrix(f, consider_all_atoms, multithread=False):
np.seterr(divide='ignore') # ignore division by zero issues
if consider_all_atoms:
label = "base"
else:
label = "backbone"
if not multithread:
# This function call is for ONE worker.
# Get a worker number for it to position the progress bar
global idxQueue
thr_idx = idxQueue.get()
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} {f} {label} distance matrices")
os.makedirs(runDir + '/results/distance_matrices/' + f + '_' + label, exist_ok=True )
align = AlignIO.read(path_to_seq_data + f"realigned/{f}_3d_only.afa", "fasta")
ncols = align.get_alignment_length()
found = 0
notfound = 0
# retrieve the mappings between this family's alignment and the CM model:
with sqlite3.connect(runDir + "/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal')
r = sql_ask_database(conn, f"SELECT structure_id, '_1_', chain_name, '_', CAST(pdb_start AS TEXT), '-', CAST(pdb_end AS TEXT) FROM chain WHERE rfam_acc='{f}';")
filelist = sorted([ ''.join(list(x))+'.cif' for x in r ])
r = sql_ask_database(conn, f"SELECT cm_coord FROM align_column WHERE rfam_acc = '{f}' AND index_ali > 0 ORDER BY index_ali ASC;")
cm_coords = [ x[0] for x in r ] # len(cm_coords) is the number of saved columns. There are many None values in the list.
i = len(cm_coords)-1
while cm_coords[i] is None:
if i == 0:
# Issue somewhere. Abort.
warn(f"{f} has no mapping to CM. Ignoring distance matrix.")
if not multithread:
idxQueue.put(thr_idx) # replace the thread index in the queue
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} finished")
return 0
i -= 1
family_end = int(cm_coords[i])
counts = np.zeros((family_end, family_end))
avg = np.zeros((family_end, family_end))
std = np.zeros((family_end, family_end))
if not multithread:
pbar = tqdm(total = len(align), position=thr_idx+1, desc=f"Worker {thr_idx+1}: {f} {label} distance matrices", unit="chains", leave=False)
pbar.update(0)
for s in align:
contrib, d, dsquared = par_distance_matrix(filelist, f, label, cm_coords, consider_all_atoms, s)
if d is not None:
found += 1
counts += contrib
avg += d
std += dsquared
else:
notfound += 1
pbar.update(1)
pbar.close()
else:
# We split the work for one family on multiple workers.
p = Pool(initializer=init_worker, initargs=(tqdm.get_lock(),), processes=nworkers)
try:
fam_pbar = tqdm(total=len(align), desc=f"{f} {label} pair distances", position=0, unit="chain", leave=True)
# Apply work_pssm_remap to each RNA family
for i, (contrib, d, dsquared) in enumerate(p.imap_unordered(partial(par_distance_matrix, filelist, f, label, cm_coords, consider_all_atoms), align, chunksize=1)):
if d is not None:
found += 1
counts += contrib
avg += d
std += dsquared
else:
notfound += 1
fam_pbar.update(1)
fam_pbar.close()
p.close()
p.join()
except KeyboardInterrupt:
warn("KeyboardInterrupt, terminating workers.", error=True)
fam_pbar.close()
p.terminate()
p.join()
exit(1)
# Calculation of the average matrix
avg = np.divide(avg, counts, where=counts>0, out=np.full_like(avg, np.NaN)) # Ultrafancy way to take avg/counts or NaN if counts is 0
np.savetxt(runDir + '/results/distance_matrices/' + f + '_'+ label + '/' + f + '_average.csv' , avg, delimiter=",", fmt="%.3f")
fig, ax = plt.subplots()
im = ax.imshow(avg)
cbar = ax.figure.colorbar(im, ax=ax)
cbar.ax.set_ylabel("Angströms", rotation=-90, va="bottom")
ax.set_title(f"Average distance between {f} residues (Angströms)")
fig.tight_layout()
fig.savefig(runDir + '/results/distance_matrices/' + f + '_'+ label + '/' + f + '_average.png', dpi=300)
plt.close()
# Calculation of the standard deviation matrix by the Huygens theorem
std = np.divide(std, counts, where=counts>0, out=np.full_like(std, np.NaN))
mask = np.invert(np.isnan(std))
value = std[mask] - np.power(avg[mask], 2)
if ((value[value<0] < -1e-2).any()):
warn("Erasing very negative variance value !")
value[value<0] = 0.0 # floating point problems !
std[mask] = np.sqrt(value)
np.savetxt(runDir + '/results/distance_matrices/' + f + '_'+ label + '/' + f + '_stdev.csv' , std, delimiter=",", fmt="%.3f")
fig, ax = plt.subplots()
im = ax.imshow(std)
cbar = ax.figure.colorbar(im, ax=ax)
cbar.ax.set_ylabel("Angströms", rotation=-90, va="bottom")
ax.set_title(f"Standard deviation of distances between {f} residues (Angströms)")
fig.tight_layout()
fig.savefig(runDir + '/results/distance_matrices/' + f + '_'+ label + '/' + f + '_std.png', dpi=300)
plt.close()
# Save log
with open(runDir + '/results/distance_matrices/' + f + '_'+ label + '/' + f + '.log', 'a') as logfile:
logfile.write(str(found)+ " chains taken into account for computation. "+ str(notfound)+ " were not found/without atoms.\n")
# Save associated nucleotide frequencies (off-topic but convenient to do it here)
with sqlite3.connect(runDir + "/results/RNANet.db") as conn:
conn.execute('pragma journal_mode=wal')
df = pd.read_sql_query(f"SELECT freq_A, freq_C, freq_G, freq_U, freq_other, gap_percent, consensus FROM align_column WHERE rfam_acc = '{f}' AND index_ali > 0 ORDER BY index_ali ASC;", conn)
df.to_csv(runDir + '/results/distance_matrices/' + f + '_'+ label + '/' + f + '_frequencies.csv', float_format="%.3f")
if not multithread:
idxQueue.put(thr_idx) # replace the thread index in the queue
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} finished")
return 0
def log_to_pbar(pbar):
def update(r):
pbar.update(1)
return update
def family_order(f):
# sort the RNA families so that the plots are readable
if f in LSU_set:
return 4
elif f in SSU_set:
return 3
elif f in ["RF00001"]: #
return 1 # put tRNAs and 5S rRNAs first,
elif f in ["RF00005"]: # because of the logarithmic scale of the lengths' figure, otherwise, they look tiny
return 0 #
else:
return 2
def conversion_angles(bdd):
"""
Convert database torsion angles to degrees
and put them in a list to reuse for statistics
"""
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
db_path = os.path.join(BASE_DIR, bdd)
baseDeDonnees = sqlite3.connect(db_path)
curseur = baseDeDonnees.cursor()
curseur.execute("SELECT chain_id, nt_name, alpha, beta, gamma, delta, epsilon, zeta, chi FROM nucleotide WHERE nt_name='A' OR nt_name='C' OR nt_name='G' OR nt_name='U' ;")
liste=[]
for nt in curseur.fetchall(): # retrieve the angle measurements and put them in a list
liste.append(nt)
angles_torsion=[]
for nt in liste :
angles_deg=[]
angles_deg.append(nt[0]) #chain_id
angles_deg.append(nt[1]) #nt_name
for i in range (2,9): # on all angles
angle=0
if nt[i] == None :
angle=None
elif nt[i]<=np.pi: #if angle value <pi, positive
angle=(180/np.pi)*nt[i]
elif np.pi < nt[i] <= 2*np.pi : #if value of the angle between pi and 2pi, negative
angle=((180/np.pi)*nt[i])-360
else :
angle=nt[i] # in case some angles still in degrees
angles_deg.append(angle)
angles_torsion.append(angles_deg)
return angles_torsion
def conversion_eta_theta(bdd):
"""
Convert database pseudotorsion angles to degrees
and put them in a list to reuse for statistics
"""
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
db_path = os.path.join(BASE_DIR, bdd)
baseDeDonnees = sqlite3.connect(db_path)
curseur = baseDeDonnees.cursor()
curseur.execute("SELECT chain_id, nt_name, eta, theta, eta_prime, theta_prime, eta_base, theta_base FROM nucleotide WHERE nt_name='A' OR nt_name='C' OR nt_name='G' OR nt_name='U';")
liste=[]
for nt in curseur.fetchall():
liste.append(nt)
angles_virtuels=[]
for nt in liste :
angles_deg=[]
angles_deg.append(nt[0]) #chain_id
angles_deg.append(nt[1]) #nt_name
for i in range (2,8):
angle=0
if nt[i] == None :
angle=None
elif nt[i]<=np.pi:
angle=(180/np.pi)*nt[i]
elif np.pi < nt[i] <= 2*np.pi :
angle=((180/np.pi)*nt[i])-360
else :
angle=nt[i]
angles_deg.append(angle)
angles_virtuels.append(angles_deg)
return angles_virtuels
def nt_3d_centers(cif_file, consider_all_atoms):
"""Return the nucleotides' coordinates, summarizing a nucleotide by only one point.
If consider_all_atoms : barycentre is used
else: C1' atom is the nucleotide
Some chains have no C1' (e.g. 4v7f-3), therefore, an empty result is returned.
"""
result =[]
structure = MMCIFParser().get_structure(cif_file, cif_file)
for model in structure:
for chain in model:
for residue in chain:
if consider_all_atoms:
temp_list = []
for atom in residue:
temp_list.append(atom.get_coord())
lg = len(temp_list)
summ = np.sum(temp_list, axis = 0)
res_isobaricentre = [summ[0]/lg, summ[1]/lg, summ[2]/lg]
result.append([res_isobaricentre[0], res_isobaricentre[1], res_isobaricentre[2]])
else:
coordinates = None
for atom in residue:
if atom.get_name() == "C1'":
coordinates = atom.get_coord()
if coordinates is None:
# Residue has no C1'
res = np.nan
else:
res = [coordinates[0], coordinates[1], coordinates[2]]
result.append(res)
return(result)
def get_euclidian_distance(L1, L2):
"""
Returns the distance between two points (coordinates in lists)
"""
if len(L1)*len(L2) == 0:
return np.nan
if len(L1) == 1:
L1 = L1[0]
if len(L2) == 1:
L2 = L2[0]
e = 0
for i in range(len(L1)):
try:
e += float(L1[i] - L2[i])**2
except TypeError:
print("Terms: ", L1, L2)
except IndexError:
print("Terms: ", L1, L2)
return np.sqrt(e)
def get_flat_angle(L1, L2, L3):
if len(L1)*len(L2)*len(L3) == 0:
return np.nan
return calc_angle(Vector(L1[0]), Vector(L2[0]), Vector(L3[0]))*(180/np.pi)
def get_torsion_angle(L1, L2, L3, L4):
if len(L1)*len(L2)*len(L3)*len(L4) == 0:
return np.nan
return calc_dihedral(Vector(L1[0]), Vector(L2[0]), Vector(L3[0]), Vector(L4[0]))*(180/np.pi)
def pos_b1(res):
"""
Returns the coordinates of virtual atom B1 (center of the first aromatic cycle)
"""
coordb1=[]
somme_x_b1=0
somme_y_b1=0
somme_z_b1=0
moy_x_b1=0
moy_y_b1=0
moy_z_b1=0
#different cases
#some residues have 2 aromatic cycles
if res.get_resname() in ['A', 'G', '2MG', '7MG', 'MA6', '6IA', 'OMG' , '2MA', 'B9B', 'A2M', '1MA', 'E7G', 'P7G', 'B8W', 'B8K', 'BGH', '6MZ', 'E6G', 'MHG', 'M7A', 'M2G', 'P5P', 'G7M', '1MG', 'T6A', 'MIA', 'YG', 'YYG', 'I', 'DG', 'N79', '574', 'DJF', 'AET', '12A', 'ANZ', 'UY4'] :
c=0
names=[]
for atom in res :
if (atom.get_fullname() in ['N9', 'C8', 'N7', 'C4', 'C5']) :
c=c+1
names.append(atom.get_name())
coord=atom.get_vector()
somme_x_b1=somme_x_b1+coord[0]
somme_y_b1=somme_y_b1+coord[1]
somme_z_b1=somme_z_b1+coord[2]
else :
c=c
#calcul coord B1
if c != 0 :
moy_x_b1=somme_x_b1/c
moy_y_b1=somme_y_b1/c
moy_z_b1=somme_z_b1/c
coordb1.append(moy_x_b1)
coordb1.append(moy_y_b1)
coordb1.append(moy_z_b1)
#others have only one cycle
if res.get_resname() in ['C', 'U', 'AG9', '70U', '1RN', 'RSP', '3AU', 'CM0', 'U8U', 'IU', 'E3C', '4SU', '5HM', 'LV2', 'LHH', '4AC', 'CH', 'Y5P', '2MU', '4OC', 'B8T', 'JMH', 'JMC', 'DC', 'B9H', 'UR3', 'I4U', 'B8Q', 'P4U', 'OMU', 'OMC', '5MU', 'H2U', 'CBV', 'M1Y', 'B8N', '3TD', 'B8H'] :
c=0
for atom in res :
if (atom.get_fullname() in ['C6', 'N3', 'N1', 'C2', 'C4', 'C5']):
c=c+1
coord=atom.get_vector()
somme_x_b1=somme_x_b1+coord[0]
somme_y_b1=somme_y_b1+coord[1]
somme_z_b1=somme_z_b1+coord[2]
#calcul coord B1
if c != 0 :
moy_x_b1=somme_x_b1/c
moy_y_b1=somme_y_b1/c
moy_z_b1=somme_z_b1/c
coordb1.append(moy_x_b1)
coordb1.append(moy_y_b1)
coordb1.append(moy_z_b1)
if len(coordb1):
return [coordb1]
else:
return []
def pos_b2(res):
"""
Returns the coordinates of virtual atom B2 (center of the second aromatic cycle, if exists)
"""
coordb2=[]
somme_x_b2=0
somme_y_b2=0
somme_z_b2=0
moy_x_b2=0
moy_y_b2=0
moy_z_b2=0
if res.get_resname() in ['A', 'G', '2MG', '7MG', 'MA6', '6IA', 'OMG' , '2MA', 'B9B', 'A2M', '1MA', 'E7G', 'P7G', 'B8W', 'B8K', 'BGH', '6MZ', 'E6G', 'MHG', 'M7A', 'M2G', 'P5P', 'G7M', '1MG', 'T6A', 'MIA', 'YG', 'YYG', 'I', 'DG', 'N79', '574', 'DJF', 'AET', '12A', 'ANZ', 'UY4'] : #2 cycles aromatiques
c=0
for atom in res :
if atom.get_fullname() in ['C6', 'N3', 'N1', 'C2', 'C4', 'C5'] :
c=c+1
coord=atom.get_vector()
somme_x_b2=somme_x_b2+coord[0]
somme_y_b2=somme_y_b2+coord[1]
somme_z_b2=somme_z_b2+coord[2]
#calcul coord B2
if c!=0 :
moy_x_b2=somme_x_b2/c
moy_y_b2=somme_y_b2/c
moy_z_b2=somme_z_b2/c
coordb2.append(moy_x_b2)
coordb2.append(moy_y_b2)
coordb2.append(moy_z_b2)
if len(coordb2):
return [coordb2]
else:
return []
def basepair_apex_distance(res, pair):
"""
measure of the distance between the tips of the paired nucleotides (B1 / B1 or B1 / B2 or B2 / B2)
"""
dist=[]
d=0
if res.get_resname()=='A' or res.get_resname()=='G' :# different cases if 1 aromatic cycle or 2
atom_res=pos_b2(res)
if pair.get_resname()=='A' or pair.get_resname()=='G' :
atom_pair=pos_b2(pair)
if pair.get_resname()=='C' or pair.get_resname()=='U' :
atom_pair=pos_b1(pair)
if res.get_resname()=='C' or res.get_resname()=='U' :
atom_res=pos_b1(res)
if pair.get_resname()=='A' or pair.get_resname()=='G' :
atom_pair=pos_b2(pair)
if pair.get_resname()=='C' or pair.get_resname()=='U' :
atom_pair=pos_b1(pair)
dist = get_euclidian_distance(atom_res, atom_pair)
return dist
def basepair_flat_angle(res, pair):
"""
measurement of the plane angles formed by the vectors C1->B1 of the paired nucleotides
"""
if res.get_resname()=='C' or res.get_resname()=='U' :
atom_c4_res = [ atom.get_coord() for atom in res if "C4'" in atom.get_fullname() ]
atom_c1p_res = [ atom.get_coord() for atom in res if "C1'" in atom.get_fullname() ]
atom_b1_res = pos_b1(res)
a1_res = Vector(atom_c4_res[0])
a2_res = Vector(atom_c1p_res[0])
a3_res = Vector(atom_b1_res[0])
if res.get_resname()=='A' or res.get_resname()=='G' :
atom_c1p_res = [ atom.get_coord() for atom in res if "C1'" in atom.get_fullname() ]
atom_b1_res = pos_b1(res)
atom_b2_res = pos_b2(res)
a1_res = Vector(atom_c1p_res[0])
a2_res = Vector(atom_b1_res[0])
a3_res = Vector(atom_b2_res[0])
if pair.get_resname()=='C' or pair.get_resname()=='U' :
atom_c4_pair = [ atom.get_coord() for atom in pair if "C4'" in atom.get_fullname() ]
atom_c1p_pair = [ atom.get_coord() for atom in pair if "C1'" in atom.get_fullname() ]
atom_b1_pair = pos_b1(pair)
a1_pair = Vector(atom_c4_pair[0])
a2_pair = Vector(atom_c1p_pair[0])
a3_pair = Vector(atom_b1_pair)
if pair.get_resname()=='A' or pair.get_resname()=='G' :
atom_c1p_pair = [ atom.get_coord() for atom in pair if "C1'" in atom.get_fullname() ]
atom_b1_pair = pos_b1(pair)
atom_b2_pair = pos_b2(pair)
a1_pair = Vector(atom_c1p_pair[0])
a2_pair = Vector(atom_b1_pair[0])
a3_pair = Vector(atom_b2_pair[0])
# we calculate the 4 plane angles including these vectors
a = calc_angle(a1_res, a2_res, a3_res)*(180/np.pi)
b = calc_angle(a2_res, a3_res, a3_pair)*(180/np.pi)
c = calc_angle(a3_res, a3_pair, a2_pair)*(180/np.pi)
d = calc_angle(a3_pair, a2_pair, a1_pair)*(180/np.pi)
angles = [a, b, c, d]
return angles
@trace_unhandled_exceptions
def measure_from_structure(f):
"""
Do geometric measures required on a given filename
"""
name = f.split('.')[0]
global idxQueue
thr_idx = idxQueue.get()
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} measure_from_structure({f})")
# Open the structure
with warnings.catch_warnings():
# Ignore the PDB problems. This mostly warns that some chain is discontinuous.
warnings.simplefilter('ignore', Bio.PDB.PDBExceptions.PDBConstructionWarning)
warnings.simplefilter('ignore', Bio.PDB.PDBExceptions.BiopythonWarning)
parser=MMCIFParser()
s = parser.get_structure(f, os.path.abspath(path_to_3D_data+ "renumbered_rna_only/" + f))
measures_aa(name, s, thr_idx)
if DO_HIRE_RNA_MEASURES:
measures_hrna(name, s, thr_idx)
measures_hrna_basepairs(name, s, thr_idx)
if DO_WADLEY_ANALYSIS:
measures_wadley(name, s, thr_idx)
idxQueue.put(thr_idx) # replace the thread index in the queue
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} finished")
@trace_unhandled_exceptions
def measures_wadley(name, s, thr_idx):
"""
Measures the distances and plane angles involving C1' and P atoms
Saves the results in a dataframe
"""
# do not recompute something already computed
if (path.isfile(runDir + '/results/geometry/Pyle/angles/angles_plans_wadley ' + name + '.csv') and
path.isfile(runDir + "/results/geometry/Pyle/distances/distances_wadley " + name + ".csv")):
return
liste_dist = []
liste_angl = []
last_p = []
last_c1p = []
last_c4p = []
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} measures_wadley({name})")
chain = next(s[0].get_chains())
for res in tqdm(chain, position=thr_idx+1, desc=f"Worker {thr_idx+1}: {name} measures_wadley", unit="res", leave=False):
p_c1p_psuiv = np.nan
c1p_psuiv_c1psuiv = np.nan
if res.get_resname() not in ['ATP', 'CCC', 'A3P', 'A23', 'GDP', 'RIA', "2BA"] :
atom_p = [ atom.get_coord() for atom in res if atom.get_name() == "P"]
atom_c1p = [ atom.get_coord() for atom in res if "C1'" in atom.get_fullname() ]
atom_c4p = [ atom.get_coord() for atom in res if "C4'" in atom.get_fullname() ]
if len(atom_c1p) > 1:
for atom in res:
if "C1'" in atom.get_fullname():
print("\n", atom.get_fullname(), "-", res.get_resname(), "\n")
p_c1p_psuiv = get_flat_angle(last_p, last_c1p, atom_p)
c1p_psuiv_c1psuiv = get_flat_angle(last_c1p, atom_p, atom_c1p)
c1p_psuiv = get_euclidian_distance(last_c1p, atom_p)
p_c1p = get_euclidian_distance(atom_p, atom_c1p)
c4p_psuiv = get_euclidian_distance(last_c4p, atom_p)
p_c4p = get_euclidian_distance(atom_p, atom_c4p)
last_p = atom_p
last_c1p = atom_c1p
last_c4p = atom_c4p
liste_dist.append([res.get_resname(), c1p_psuiv, p_c1p, c4p_psuiv, p_c4p])
liste_angl.append([res.get_resname(), p_c1p_psuiv, c1p_psuiv_c1psuiv])
df = pd.DataFrame(liste_dist, columns=["Residu", "C1'-P", "P-C1'", "C4'-P", "P-C4'"])
df.to_csv(runDir + "/results/geometry/Pyle/distances/distances_wadley " + name + ".csv")
df = pd.DataFrame(liste_angl, columns=["Residu", "P-C1'-P°", "C1'-P°-C1'°"])
df.to_csv(runDir + "/results/geometry/Pyle/angles/angles_plans_wadley "+name+".csv")
@trace_unhandled_exceptions
def measures_aa(name, s, thr_idx):
"""
Measures the distance between atoms linked by covalent bonds
"""
# do not recompute something already computed
if path.isfile(runDir+"/results/geometry/all-atoms/distances/dist_atoms "+name+".csv"):
return
last_o3p = [] # o3 'of the previous nucleotide linked to the P of the current nucleotide
liste_common = []
liste_purines = []
liste_pyrimidines = []
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} measure_aa_dists({name})")
chain = next(s[0].get_chains()) # 1 chain per file
residues = list(chain.get_residues())
pbar = tqdm(total=len(residues), position=thr_idx+1, desc=f"Worker {thr_idx+1}: {name} measure_aa_dists", unit="res", leave=False)
pbar.update(0)
for res in chain :
# for residues A, G, C, U
op3_p=[]
p_op1=[]
p_op2=[]
p_o5p=[]
o5p_c5p=[]
c5p_c4p=[]
c4p_o4p=[]
o4p_c1p=[]
c1p_c2p=[]
c2p_o2p=[]
c2p_c3p=[]
c3p_o3p=[]
c4p_c3p=[]
#if res = A or G
c1p_n9=None
n9_c8=None
c8_n7=None
n7_c5=None
c5_c6=None
c6_n1=None
n1_c2=None
c2_n3=None
n3_c4=None
c4_n9=None
c4_c5=None
#if res=G
c6_o6=None
c2_n2=None
#if res = A
c6_n6=None
#if res = C or U
c1p_n1=None
n1_c6=None
c6_c5=None
c5_c4=None
c4_n3=None
n3_c2=None
c2_n1=None
c2_o2=None
#if res =C
c4_n4=None
#if res=U
c4_o4=None
last_o3p_p=None
if res.get_resname()=='A' or res.get_resname()=='G' or res.get_resname()=='C' or res.get_resname()=='U' :
#get the coordinates of the atoms
atom_p = [ atom.get_coord() for atom in res if atom.get_name() == "P"]
atom_op3 = [ atom.get_coord() for atom in res if "OP3" in atom.get_fullname() ]
atom_op1 = [ atom.get_coord() for atom in res if "OP1" in atom.get_fullname() ]
atom_op2 = [ atom.get_coord() for atom in res if "OP2" in atom.get_fullname() ]
atom_o5p= [ atom.get_coord() for atom in res if "O5'" in atom.get_fullname() ]
atom_c5p = [ atom.get_coord() for atom in res if "C5'" in atom.get_fullname() ]
atom_c4p = [ atom.get_coord() for atom in res if "C4'" in atom.get_fullname() ]
atom_o4p = [ atom.get_coord() for atom in res if "O4'" in atom.get_fullname() ]
atom_c3p = [ atom.get_coord() for atom in res if "C3'" in atom.get_fullname() ]
atom_o3p = [ atom.get_coord() for atom in res if "O3'" in atom.get_fullname() ]
atom_c2p = [ atom.get_coord() for atom in res if "C2'" in atom.get_fullname() ]
atom_o2p = [ atom.get_coord() for atom in res if "O2'" in atom.get_fullname() ]
atom_c1p = [ atom.get_coord() for atom in res if "C1'" in atom.get_fullname() ]
atom_n9 = [ atom.get_coord() for atom in res if "N9" in atom.get_fullname() ]
atom_c8 = [ atom.get_coord() for atom in res if "C8" in atom.get_fullname() ]
atom_n7 = [ atom.get_coord() for atom in res if "N7" in atom.get_fullname() ]
atom_c5 = [ atom.get_coord() for atom in res if atom.get_name() == "C5"]
atom_c6 = [ atom.get_coord() for atom in res if "C6" in atom.get_fullname() ]
atom_o6 = [ atom.get_coord() for atom in res if "O6" in atom.get_fullname() ]
atom_n6 = [ atom.get_coord() for atom in res if "N6" in atom.get_fullname() ]
atom_n1 = [ atom.get_coord() for atom in res if "N1" in atom.get_fullname() ]
atom_c2 = [ atom.get_coord() for atom in res if atom.get_name() == "C2"]
atom_n2 = [ atom.get_coord() for atom in res if "N2" in atom.get_fullname() ]
atom_o2 = [ atom.get_coord() for atom in res if atom.get_name() == "O2"]
atom_n3 = [ atom.get_coord() for atom in res if "N3" in atom.get_fullname() ]
atom_c4 = [ atom.get_coord() for atom in res if atom.get_name() == "C4" ]
atom_n4 = [ atom.get_coord() for atom in res if "N4" in atom.get_fullname() ]
atom_o4 = [ atom.get_coord() for atom in res if atom.get_name() == "O4"]
op3_p = get_euclidian_distance(atom_op3, atom_p)
last_o3p_p = get_euclidian_distance(last_o3p, atom_p) # link with the previous nucleotide
p_op1 = get_euclidian_distance(atom_op1, atom_p)
p_op2 = get_euclidian_distance(atom_op2, atom_p)
p_o5p = get_euclidian_distance(atom_o5p, atom_p)
o5p_c5p = get_euclidian_distance(atom_o5p, atom_c5p)
c5p_c4p = get_euclidian_distance(atom_c5p, atom_c4p)
c4p_o4p = get_euclidian_distance(atom_c4p, atom_o4p)
c4p_c3p = get_euclidian_distance(atom_c4p, atom_c3p)
o4p_c1p = get_euclidian_distance(atom_o4p, atom_c1p)
c1p_c2p = get_euclidian_distance(atom_c1p, atom_c2p)
c2p_o2p = get_euclidian_distance(atom_c2p, atom_o2p)
c2p_c3p = get_euclidian_distance(atom_c2p, atom_c3p)
c3p_o3p = get_euclidian_distance(atom_c3p, atom_o3p)
last_o3p=atom_o3p # o3' of this residue becomes the previous o3' of the following
#different cases for the aromatic cycles
if res.get_resname()=='A' or res.get_resname()=='G':
# computes the distances between atoms of aromatic cycles
c1p_n9 = get_euclidian_distance(atom_c1p, atom_n9)
n9_c8 = get_euclidian_distance(atom_n9, atom_c8)
c8_n7 = get_euclidian_distance(atom_c8, atom_n7)
n7_c5 = get_euclidian_distance(atom_n7, atom_c5)
c5_c6 = get_euclidian_distance(atom_c5, atom_c6)
c6_o6 = get_euclidian_distance(atom_c6, atom_o6)
c6_n6 = get_euclidian_distance(atom_c6, atom_n6)
c6_n1 = get_euclidian_distance(atom_c6, atom_n1)
n1_c2 = get_euclidian_distance(atom_n1, atom_c2)
c2_n2 = get_euclidian_distance(atom_c2, atom_n2)
c2_n3 = get_euclidian_distance(atom_c2, atom_n3)
n3_c4 = get_euclidian_distance(atom_n3, atom_c4)
c4_n9 = get_euclidian_distance(atom_c4, atom_n9)
c4_c5 = get_euclidian_distance(atom_c4, atom_c5)
if res.get_resname()=='C' or res.get_resname()=='U' :
c1p_n1 = get_euclidian_distance(atom_c1p, atom_n1)
n1_c6 = get_euclidian_distance(atom_n1, atom_c6)
c6_c5 = get_euclidian_distance(atom_c6, atom_c5)
c5_c4 = get_euclidian_distance(atom_c5, atom_c4)
c4_n3 = get_euclidian_distance(atom_c4, atom_n3)
n3_c2 = get_euclidian_distance(atom_n3, atom_c2)
c2_o2 = get_euclidian_distance(atom_c2, atom_o2)
c2_n1 = get_euclidian_distance(atom_c2, atom_n1)
c4_n4 = get_euclidian_distance(atom_c4, atom_n4)
c4_o4 = get_euclidian_distance(atom_c4, atom_o4)
liste_common.append([res.get_resname(), last_o3p_p, op3_p, p_op1, p_op2, p_o5p, o5p_c5p, c5p_c4p, c4p_o4p, c4p_c3p, o4p_c1p, c1p_c2p, c2p_o2p, c2p_c3p, c3p_o3p] )
liste_purines.append([c1p_n9, n9_c8, c8_n7, n7_c5, c5_c6, c6_o6, c6_n6, c6_n1, n1_c2, c2_n2, c2_n3, n3_c4, c4_n9, c4_c5])
liste_pyrimidines.append([c1p_n1, n1_c6, c6_c5, c5_c4, c4_n3, n3_c2, c2_o2, c2_n1, c4_n4, c4_o4])
pbar.update(1)
df_comm=pd.DataFrame(liste_common, columns=["Residu", "O3'-P", "OP3-P", "P-OP1", "P-OP2", "P-O5'", "O5'-C5'", "C5'-C4'", "C4'-O4'", "C4'-C3'", "O4'-C1'", "C1'-C2'", "C2'-O2'", "C2'-C3'", "C3'-O3'"])
df_pur=pd.DataFrame(liste_purines, columns=["C1'-N9", "N9-C8", "C8-N7", "N7-C5", "C5-C6", "C6-O6", "C6-N6", "C6-N1", "N1-C2", "C2-N2", "C2-N3", "N3-C4", "C4-N9", "C4-C5" ])
df_pyr=pd.DataFrame(liste_pyrimidines, columns=["C1'-N1", "N1-C6", "C6-C5", "C5-C4", "C4-N3", "N3-C2", "C2-O2", "C2-N1", "C4-N4", "C4-O4"])
df=pd.concat([df_comm, df_pur, df_pyr], axis = 1)
pbar.close()
df.to_csv(runDir + "/results/geometry/all-atoms/distances/dist_atoms " + name + ".csv")
@trace_unhandled_exceptions
def measures_hrna(name, s, thr_idx):
"""
Measures the distance/angles between the atoms of the HiRE-RNA model linked by covalent bonds
"""
# do not recompute something already computed
if (path.isfile(runDir + '/results/geometry/HiRE-RNA/distances/dist_atoms_hire_RNA '+name+'.csv') and
path.isfile(runDir + '/results/geometry/HiRE-RNA/angles/angles_hire_RNA '+name+'.csv') and
path.isfile(runDir + '/results/geometry/HiRE-RNA/torsions/angles_torsion_hire_RNA '+name+'.csv')):
return
liste_dist=[]
liste_angl = []
liste_tors = []
last_c4p = []
last_c5p = []
last_c1p = []
last_o5p = []
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} measures_hrna({name})")
chain = next(s[0].get_chains())
residues=list(chain.get_residues())
for res in tqdm(chain, position=thr_idx+1, desc=f"Worker {thr_idx+1}: {name} measures_hrna", unit="res", leave=False):
# distances
p_o5p = None
o5p_c5p = None
c5p_c4p = None
c4p_c1p = None
c1p_b1 = None
b1_b2 = None
last_c4p_p = np.nan
# angles
p_o5p_c5p = None
o5p_c5p_c4p = None
c5p_c4p_c1p = None
c4p_c1p_b1 = None
c1p_b1_b2 = None
lastc4p_p_o5p = None
lastc5p_lastc4p_p = None
lastc1p_lastc4p_p = None
# torsions
p_o5_c5_c4 = np.nan
o5_c5_c4_c1 = np.nan
c5_c4_c1_b1 = np.nan
c4_c1_b1_b2 = np.nan
o5_c5_c4_psuiv = np.nan
c5_c4_psuiv_o5suiv = np.nan
c4_psuiv_o5suiv_c5suiv = np.nan
c1_c4_psuiv_o5suiv = np.nan
if res.get_resname() not in ['ATP', 'CCC', 'A3P', 'A23', 'GDP', 'RIA', "2BA"] : # several phosphate groups, ignore
atom_p = [ atom.get_coord() for atom in res if atom.get_name() == "P"]
atom_o5p= [ atom.get_coord() for atom in res if "O5'" in atom.get_fullname() ]
atom_c5p = [ atom.get_coord() for atom in res if "C5'" in atom.get_fullname() ]
atom_c4p = [ atom.get_coord() for atom in res if "C4'" in atom.get_fullname() ]
atom_c1p = [ atom.get_coord() for atom in res if "C1'" in atom.get_fullname() ]
atom_b1 = pos_b1(res) # position b1 to be calculated, depending on the case
atom_b2 = pos_b2(res) # position b2 to be calculated only for those with 2 cycles
# Distances. If one of the atoms is empty, the euclidian distance returns NaN.
last_c4p_p = get_euclidian_distance(last_c4p, atom_p)
p_o5p = get_euclidian_distance(atom_p, atom_o5p)
o5p_c5p = get_euclidian_distance(atom_o5p, atom_c5p)
c5p_c4p = get_euclidian_distance(atom_c5p, atom_c4p)
c4p_c1p = get_euclidian_distance(atom_c4p, atom_c1p)
c1p_b1 = get_euclidian_distance(atom_c1p, atom_b1)
b1_b2 = get_euclidian_distance(atom_b1, atom_b2)
# flat angles. Same.
lastc4p_p_o5p = get_flat_angle(last_c4p, atom_p, atom_o5p)
lastc1p_lastc4p_p = get_flat_angle(last_c1p, last_c4p, atom_p)
lastc5p_lastc4p_p = get_flat_angle(last_c5p, last_c4p, atom_p)
p_o5p_c5p = get_flat_angle(atom_p, atom_o5p, atom_c5p)
o5p_c5p_c4p = get_flat_angle(atom_o5p, atom_c5p, atom_c4p)
c5p_c4p_c1p = get_flat_angle(atom_c5p, atom_c4p, atom_c1p)
c4p_c1p_b1 = get_flat_angle(atom_c4p, atom_c1p, atom_b1)
c1p_b1_b2 = get_flat_angle(atom_c1p, atom_b1, atom_b2)
# torsions. Idem.
p_o5_c5_c4 = get_torsion_angle(atom_p, atom_o5p, atom_c5p, atom_c4p)
o5_c5_c4_c1 = get_torsion_angle(atom_o5p, atom_c5p, atom_c4p, atom_c1p)
c5_c4_c1_b1 = get_torsion_angle(atom_c5p, atom_c4p, atom_c1p, atom_b1)
c4_c1_b1_b2 = get_torsion_angle(atom_c4p, atom_c1p, atom_b1, atom_b2)
o5_c5_c4_psuiv = get_torsion_angle(last_o5p, last_c5p, last_c4p, atom_p)
c5_c4_psuiv_o5suiv = get_torsion_angle(last_c5p, last_c4p, atom_p, atom_o5p)
c4_psuiv_o5suiv_c5suiv = get_torsion_angle(last_c4p, atom_p, atom_o5p, atom_c5p)
c1_c4_psuiv_o5suiv = get_torsion_angle(last_c1p, last_c4p, atom_p, atom_o5p)
last_c4p = atom_c4p
last_c5p = atom_c5p
last_c1p = atom_c1p
last_o5p = atom_o5p
liste_dist.append([res.get_resname(), last_c4p_p, p_o5p, o5p_c5p, c5p_c4p, c4p_c1p, c1p_b1, b1_b2])
liste_angl.append([res.get_resname(), lastc4p_p_o5p, lastc1p_lastc4p_p, lastc5p_lastc4p_p, p_o5p_c5p, o5p_c5p_c4p, c5p_c4p_c1p, c4p_c1p_b1, c1p_b1_b2])
liste_tors.append([res.get_resname(), p_o5_c5_c4, o5_c5_c4_c1, c5_c4_c1_b1, c4_c1_b1_b2, o5_c5_c4_psuiv, c5_c4_psuiv_o5suiv, c4_psuiv_o5suiv_c5suiv, c1_c4_psuiv_o5suiv])
df = pd.DataFrame(liste_dist, columns=["Residu", "C4'-P", "P-O5'", "O5'-C5'", "C5'-C4'", "C4'-C1'", "C1'-B1", "B1-B2"])
df.to_csv(runDir + '/results/geometry/HiRE-RNA/distances/dist_atoms_hire_RNA '+name+'.csv')
df = pd.DataFrame(liste_angl, columns=["Residu", "C4'-P-O5'", "C1'-C4'-P", "C5'-C4'-P", "P-O5'-C5'", "O5'-C5'-C4'", "C5'-C4'-C1'", "C4'-C1'-B1", "C1'-B1-B2"])
df.to_csv(runDir + '/results/geometry/HiRE-RNA/angles/angles_hire_RNA ' + name + ".csv")
df=pd.DataFrame(liste_tors, columns=["Residu", "P-O5'-C5'-C4'", "O5'-C5'-C4'-C1'", "C5'-C4'-C1'-B1", "C4'-C1'-B1-B2", "O5'-C5'-C4'-P°", "C5'-C4'-P°-O5'°", "C4'-P°-O5'°-C5'°", "C1'-C4'-P°-O5'°"])
df.to_csv(runDir + '/results/geometry/HiRE-RNA/torsions/angles_torsion_hire_RNA '+name+'.csv')
@trace_unhandled_exceptions
def measures_hrna_basepairs(name, s, thr_idx):
"""
Open a renumbered_rna_only/ file, and run measures_hrna_basepairs_chain() on every chain
"""
setproctitle(f"RNANet statistics.py Worker {thr_idx+1} measures_hrna_basepairs({name})")
l=[]
chain = next(s[0].get_chains())
# do not recompute something already computed
if path.isfile(runDir + "/results/geometry/HiRE-RNA/basepairs/basepairs "+name+".csv"):
return
df=pd.read_csv(os.path.abspath(path_to_3D_data +"datapoints/" + name))
if df['index_chain'][0]==1:#ignore files with numbering errors
l = measures_hrna_basepairs_chain(chain, df, thr_idx)
df_calc=pd.DataFrame(l, columns=["Chaine", "type LW", "Resseq", "Num paired", "Distance", "C4'-C1'-B1", "C1'-B1-B1pair", "B1-B1pair-C1'pair", "B1pair-C1'pair-C4'pair"])
df_calc.to_csv(runDir + "/results/geometry/HiRE-RNA/basepairs/"+'basepairs '+name+'.csv')
@trace_unhandled_exceptions
def measures_hrna_basepairs_chain(chain, df, thr_idx):
"""
Cleanup of the dataset
measurements of distances and angles between paired nucleotides in the chain
"""
liste_dist=[]
warnings.simplefilter(action="ignore", category=SettingWithCopyWarning)
pairs = df[['index_chain', 'old_nt_resnum', 'paired', 'pair_type_LW']] # columns we keep
for i in range(pairs.shape[0]): #we remove the lines where no pairing (NaN in paired)
index_with_nan=pairs.index[pairs.iloc[:,2].isnull()]
pairs.drop(index_with_nan, 0, inplace=True)
paired_int=[]
for i in pairs.index:# convert values from paired to integers or lists of integers
paired=pairs.at[i, 'paired']
if type(paired) is np.int64 or type(paired) is np.float64:
paired_int.append(int(paired))
else : #strings
if len(paired)<3 : #a single pairing
paired_int.append(int(paired))
else : #several pairings
paired=paired.split(',')
l=[int(i) for i in paired]
paired_int.append(l)
pair_type_LW_bis=[]
for j in pairs.index:
pair_type_LW = pairs.at[j, 'pair_type_LW']
if len(pair_type_LW)<4 : #a single pairing
pair_type_LW_bis.append(pair_type_LW)
else : #several pairings
pair_type_LW=pair_type_LW.split(',')
l=[i for i in pair_type_LW]
pair_type_LW_bis.append(pair_type_LW)
#addition of these new columns
pairs.insert(4, "paired_int", paired_int, True)
pairs.insert(5, "pair_type_LW_bis", pair_type_LW_bis, True)
indexNames=pairs[pairs['paired_int'] == 0].index
pairs.drop(indexNames, inplace=True)#deletion of lines with a 0 in paired_int (matching to another RNA chain)
for i in tqdm(pairs.index, position=thr_idx+1, desc=f"Worker {thr_idx+1}: {chain} measures_hrna_basepairs_chain", unit="res", leave=False):
"""
calculations for each row of the pairs dataset
"""
index=pairs.at[i, 'index_chain']
type_LW=pairs.at[i, 'pair_type_LW_bis'] #pairing type
num_paired=pairs.at[i, 'paired_int'] #number (index_chain) of the paired nucleotide
if type(num_paired) is int or type(num_paired) is np.int64:
try :
d = basepair_apex_distance(chain[(' ',index, ' ')], chain[(' ', num_paired, ' ')])
angle = basepair_flat_angle(chain[(' ', index, ' ')], chain[(' ', num_paired, ' ')])
if d != 0.0:
liste_dist.append([chain, type_LW, index, num_paired, d, angle[0], angle[1], angle[2], angle[3]])
except :
pass
else :
for j in range(len(num_paired)): #if several pairings, process them one by one
if num_paired[j] != 0 :
try :
d = basepair_apex_distance(chain[(' ', index, ' ')], chain[(' ', num_paired[j], ' ')])
angle = basepair_flat_angle(chain[(' ', index, ' ')], chain[(' ', num_paired[j], ' ')])
if d != 0.0:
liste_dist.append([chain, type_LW[j], index, num_paired[j], d, angle[0], angle[1], angle[2], angle[3]])
except:
pass
return(liste_dist)
@trace_unhandled_exceptions
def GMM_histo(data_ori, name_data, toric=False, hist=True, couleur=None, save=True) :
"""
Plot Gaussian-Mixture-Model (with or without histograms)
"""
data_ori = np.array(data_ori)
if toric:
# Extend the data on the right and on the left (for angles)
data = np.concatenate([data_ori, data_ori-360.0, data_ori+360.0])
else:
data = data_ori
# chooses the number of components based on the maximum likelihood value (maxlogv)
n_components_range = np.arange(8)+1
aic = []
bic = []
maxlogv=[]
md = np.array(data).reshape(-1,1)
nb_components = 1
nb_log_max = n_components_range[0]
log_max = 0
for n_comp in n_components_range:
gmm = GaussianMixture(n_components=n_comp).fit(md)
aic.append(abs(gmm.aic(md)))
bic.append(abs(gmm.bic(md)))
maxlogv.append(gmm.lower_bound_)
if gmm.lower_bound_== max(maxlogv) : # takes the maximum
nb_components = n_comp
# if there is convergence, keep the first maximum found
if abs(gmm.lower_bound_-log_max) < 0.02 : #threshold=0.02
nb_components = nb_log_max
break
log_max = max(maxlogv)
nb_log_max = n_comp
# Now compute the final GMM
obs = np.array(data).reshape(-1,1) # still on extended data
g = GaussianMixture(n_components=nb_components)
g.fit(obs)
if toric:
# Now decide which to keep
keep = []
weights = []
means = []
covariances = []
sum_weights = 0.0
for m in g.means_:
keep.append(m > -180 and m <= 180)
for i, w in enumerate(g.weights_):
if not keep[i]:
continue
sum_weights += w
for i in range(nb_components):
if not keep[i]:
continue
means.append(g.means_[i])
covariances.append(g.covariances_[i])
weights.append(g.weights_[i]/sum_weights)
nb_components = len(means)
else:
weights = g.weights_
means = g.means_
covariances = g.covariances_
# plot histograms if asked, with the appropriate number of components
if hist:
plt.hist(data_ori, color="green", edgecolor='black', linewidth=1.2, bins=50, density=True)
if toric:
plt.xlabel("Angle (Degré)")
else:
plt.xlabel("Distance (Angström)")
plt.ylabel("Densité")
# Prepare the GMM curve with some absciss points
if toric:
x = np.linspace(-360.0,360.0,721)
else:
D = obs.ravel()
xmin = D.min()
xmax = min(10.0, D.max())
x = np.linspace(xmin,xmax,1000)
colors=['red', 'blue', 'gold', 'cyan', 'magenta', 'white', 'black', 'green']
# prepare the dictionary to save the parameters
summary_data = {}
summary_data["measure"] = name_data
summary_data["weights"] = []
summary_data["means"] = []
summary_data["std"] = []
# plot
courbes = []
for i in range(nb_components):
# store the parameters
mean = means[i]
sigma = np.sqrt(covariances[i])
weight = weights[i]
summary_data["means"].append(str(mean))
summary_data["std"].append(str(sigma))
summary_data["weights"].append(str(weight))
# compute the right x and y data to plot
y = weight*st.norm.pdf(x, mean, sigma)
if toric:
y_mod = (((y[0]+180.0)%360.0)-180.0)
x_mod = (((x+180.0)%360.0)-180.0)
s = sorted(zip(x_mod,y_mod))
newx = []
newy = []
for k in range(0, len(s), 2):
if k == 362.0:
continue # this value is dealt with when k = 360.0
# print(k, "summing: ", s[k-int(k>360)], s[k+1-int(k>360)])
newx.append(s[k-int(k>360)][0])
if k == 360.0:
newy.append(s[k][1]+s[k+1][1]+s[k+2][1])
else:
newy.append(s[k-int(k>360)][1]+s[k+1-int(k>360)][1])
else:
newx = x
newy = y[0]
if hist:
# plot on top of the histograms
plt.plot(newx, newy, c=colors[i])
else:
# store for later summation
courbes.append(np.array(newy))
if hist:
plt.title("Histogramme " +name_data+ " avec GMM pour " +str(nb_components)+ " composantes (" + str(len(data_ori))+" valeurs)")
if save:
plt.savefig("Histogramme " +name_data+ " avec GMM pour " +str(nb_components)+ " composantes (" + str(len(data_ori))+" valeurs).png")
plt.close()
else:
# Plot their sum, do not save figure yet
try:
plt.plot(newx, sum(courbes), c=couleur, label=name_data)
except TypeError:
print("N curves:", len(courbes))
for c in courbes:
print(c)
plt.legend()
# Save the json
with open(runDir + "/results/geometry/json/" +name_data + " .json", 'w', encoding='utf-8') as f:
json.dump(summary_data, f, indent=4)
@trace_unhandled_exceptions
def gmm_aa_dists():
"""
Draw the figures representing the data on the measurements of distances between atoms
"""
setproctitle("GMM (all atoms, distances)")
df=pd.read_csv(os.path.abspath(runDir + "/results/geometry/all-atoms/distances/dist_atoms.csv"))
last_o3p_p=list(df["O3'-P"][~ np.isnan(df["O3'-P"])])
#print(last_o3p_p)
op3_p=list(df["OP3-P"][~ np.isnan(df["OP3-P"])])
p_op1=list(df["P-OP1"][~ np.isnan(df["P-OP1"])])
p_op2=list(df["P-OP2"][~ np.isnan(df["P-OP2"])])
p_o5p=list(df["P-O5'"][~ np.isnan(df["P-O5'"])])
o5p_c5p=list(df["O5'-C5'"][~ np.isnan(df["O5'-C5'"])])
c5p_c4p=list(df["C5'-C4'"][~ np.isnan(df["C5'-C4'"])])
c4p_o4p=list(df["C4'-O4'"][~ np.isnan(df["C4'-O4'"])])
o4p_c1p=list(df["O4'-C1'"][~ np.isnan(df["O4'-C1'"])])
c1p_c2p=list(df["C1'-C2'"][~ np.isnan(df["C1'-C2'"])])
c2p_o2p=list(df["C2'-O2'"][~ np.isnan(df["C2'-O2'"])])
c2p_c3p=list(df["C2'-C3'"][~ np.isnan(df["C2'-C3'"])])
c3p_o3p=list(df["C3'-O3'"][~ np.isnan(df["C3'-O3'"])])
c4p_c3p=list(df["C4'-C3'"][~ np.isnan(df["C4'-C3'"])])
#if res = A ou G
c1p_n9=list(df["C1'-N9"][~ np.isnan(df["C1'-N9"])])
n9_c8=list(df["N9-C8"][~ np.isnan(df["N9-C8"])])
c8_n7=list(df["C8-N7"][~ np.isnan(df["C8-N7"])])
n7_c5=list(df["N7-C5"][~ np.isnan(df["N7-C5"])])
c5_c6=list(df["C5-C6"][~ np.isnan(df["C5-C6"])])
c6_n1=list(df["C6-N1"][~ np.isnan(df["C6-N1"])])
n1_c2=list(df["N1-C2"][~ np.isnan(df["N1-C2"])])
c2_n3=list(df["C2-N3"][~ np.isnan(df["C2-N3"])])
n3_c4=list(df["N3-C4"][~ np.isnan(df["N3-C4"])])
c4_n9=list(df["C4-N9"][~ np.isnan(df["C4-N9"])])
c4_c5=list(df["C4-C5"][~ np.isnan(df["C4-C5"])])
#if res=G
c6_o6=list(df["C6-O6"][~ np.isnan(df["C6-O6"])])
c2_n2=list(df["C2-N2"][~ np.isnan(df["C2-N2"])])
#if res = A
c6_n6=list(df["C6-N6"][~ np.isnan(df["C6-N6"])])
#if res = C ou U
c1p_n1=list(df["C1'-N1"][~ np.isnan(df["C1'-N1"])])
n1_c6=list(df["N1-C6"][~ np.isnan(df["N1-C6"])])
c6_c5=list(df["C6-C5"][~ np.isnan(df["C6-C5"])])
c5_c4=list(df["C5-C4"][~ np.isnan(df["C5-C4"])])
c4_n3=list(df["C4-N3"][~ np.isnan(df["C4-N3"])])
n3_c2=list(df["N3-C2"][~ np.isnan(df["N3-C2"])])
c2_n1=list(df["C2-N1"][~ np.isnan(df["C2-N1"])])
c2_o2=list(df["C2-O2"][~ np.isnan(df["C2-O2"])])
#if res =C
c4_n4=list(df["C4-N4"][~ np.isnan(df["C4-N4"])])
#if res=U
c4_o4=list(df["C4-O4"][~ np.isnan(df["C4-O4"])])
os.makedirs(runDir+"/results/figures/GMM/all-atoms/distances/commun/", exist_ok=True)
os.chdir(runDir+"/results/figures/GMM/all-atoms/distances/commun/")
# draw figures for atoms common to all nucleotides
GMM_histo(last_o3p_p, "O3'-P")
if len(op3_p) > 0 :
GMM_histo(op3_p, "OP3-P")
GMM_histo(p_op1, "P-OP1")
GMM_histo(p_op2, "P-OP2")
GMM_histo(p_o5p, "P-O5'")
GMM_histo(o5p_c5p, "O5'-C5'")
GMM_histo(c5p_c4p, "C5'-C4'")
GMM_histo(c4p_o4p, "C4'-O4'")
GMM_histo(c4p_c3p, "C4'-C3'")
GMM_histo(c3p_o3p, "C3'-O3'")
GMM_histo(o4p_c1p, "O4'-C1'")
GMM_histo(c1p_c2p, "C1'-C2'")
GMM_histo(c2p_c3p, "C2'-C3'")
GMM_histo(c2p_o2p, "C2'-O2'")
if len(op3_p) > 0 :
GMM_histo(op3_p, "OP3-P", toric=False, hist=False, couleur= 'lightcoral')
GMM_histo(p_op1, "P-OP1", toric=False, hist=False, couleur='gold')
GMM_histo(p_op2, "P-OP2", toric=False, hist=False, couleur='lightseagreen')
GMM_histo(last_o3p_p, "O3'-P", toric=False, hist=False, couleur='saddlebrown')
GMM_histo(p_o5p, "P-O5'", toric=False, hist=False, couleur='darkturquoise')
GMM_histo(o5p_c5p, "O5'-C5'", toric=False, hist=False, couleur='darkkhaki')
GMM_histo(c5p_c4p, "C5'-C4'", toric=False, hist=False, couleur='indigo')
GMM_histo(c4p_o4p, "C4'-O4'", toric=False, hist=False, couleur='maroon')
GMM_histo(c4p_c3p, "C4'-C3'", toric=False, hist=False, couleur='burlywood')
GMM_histo(c3p_o3p, "C3'-O3'", toric=False, hist=False, couleur='steelblue')
GMM_histo(o4p_c1p, "O4'-C1'", toric=False, hist=False, couleur='tomato')
GMM_histo(c1p_c2p, "C1'-C2'", toric=False, hist=False, couleur='darkolivegreen')
GMM_histo(c2p_c3p, "C2'-C3'", toric=False, hist=False, couleur='orchid')
GMM_histo(c2p_o2p, "C2'-O2'", toric=False, hist=False, couleur='deeppink')
axes=plt.gca()
axes.set_ylim(0, 100)
plt.xlabel("Distance (Angström)")
plt.title("GMM des distances entre atomes communs ")
plt.savefig(runDir + "/results/figures/GMM/all-atoms/distances/commun/" + "GMM des distances entre atomes communs .png")
plt.close()
os.makedirs(runDir+"/results/figures/GMM/all-atoms/distances/purines/", exist_ok=True)
os.chdir(runDir+"/results/figures/GMM/all-atoms/distances/purines/")
# purines
GMM_histo(c1p_n9, "C1'-N9")
GMM_histo(n9_c8, "N9-C8")
GMM_histo(c8_n7, "C8-N7")
GMM_histo(n7_c5, "N7-C5")
GMM_histo(c5_c6, "C5-C6")
GMM_histo(c6_o6, "C6-O6")
GMM_histo(c6_n6, "C6-N6")
GMM_histo(c6_n1, "C6-N1")
GMM_histo(n1_c2, "N1-C2")
GMM_histo(c2_n2, "C2-N2")
GMM_histo(c2_n3, "C2-N3")
GMM_histo(n3_c4, "N3-C4")
GMM_histo(c4_n9, "C4-N9")
GMM_histo(c4_c5, "C4-C5")
GMM_histo(c1p_n9, "C1'-N9", hist=False, couleur='lightcoral')
GMM_histo(n9_c8, "N9-C8", hist=False, couleur='gold')
GMM_histo(c8_n7, "C8-N7", hist=False, couleur='lightseagreen')
GMM_histo(n7_c5, "N7-C5", hist=False, couleur='saddlebrown')
GMM_histo(c5_c6, "C5-C6", hist=False, couleur='darkturquoise')
GMM_histo(c6_o6, "C6-O6", hist=False, couleur='darkkhaki')
GMM_histo(c6_n6, "C6-N6", hist=False, couleur='indigo')
GMM_histo(c6_n1, "C6-N1", hist=False, couleur='maroon')
GMM_histo(n1_c2, "N1-C2", hist=False, couleur='burlywood')
GMM_histo(c2_n2, "C2-N2", hist=False, couleur='steelblue')
GMM_histo(c2_n3, "C2-N3", hist=False, couleur='tomato')
GMM_histo(n3_c4, "N3-C4", hist=False, couleur='darkolivegreen')
GMM_histo(c4_n9, "C4-N9", hist=False, couleur='orchid')
GMM_histo(c4_c5, "C4-C5", hist=False, couleur='deeppink')
axes=plt.gca()
axes.set_ylim(0, 100)
plt.xlabel("Distance (Angström)")
plt.title("GMM des distances entre atomes des cycles purines", fontsize=10)
plt.savefig(runDir+ "/results/figures/GMM/all-atoms/distances/purines/" + "GMM des distances entre atomes des cycles purines.png")
plt.close()
os.makedirs(runDir+"/results/figures/GMM/all-atoms/distances/pyrimidines/", exist_ok=True)
os.chdir(runDir+"/results/figures/GMM/all-atoms/distances/pyrimidines/")
# pyrimidines
GMM_histo(c1p_n1, "C1'-N1")
GMM_histo(n1_c6, "N1-C6")
GMM_histo(c6_c5, "C6-C5")
GMM_histo(c5_c4, "C5-C4")
GMM_histo(c4_n3, "C4-N3")
GMM_histo(n3_c2, "N3-C2")
GMM_histo(c2_o2, "C2-O2")
GMM_histo(c2_n1, "C2-N1")
GMM_histo(c4_n4, "C4-N4")
GMM_histo(c4_o4, "C4-O4")
GMM_histo(c1p_n1, "C1'-N1", hist=False, couleur='lightcoral')
GMM_histo(n1_c6, "N1-C6", hist=False, couleur='gold')
GMM_histo(c6_c5, "C6-C5", hist=False, couleur='lightseagreen')
GMM_histo(c5_c4, "C5-C4", hist=False, couleur='deeppink')
GMM_histo(c4_n3, "C4-N3", hist=False, couleur='red')
GMM_histo(n3_c2, "N3-C2", hist=False, couleur='lime')
GMM_histo(c2_o2, "C2-O2", hist=False, couleur='indigo')
GMM_histo(c2_n1, "C2-N1", hist=False, couleur='maroon')
GMM_histo(c4_n4, "C4-N4", hist=False, couleur='burlywood')
GMM_histo(c4_o4, "C4-O4", hist=False, couleur='steelblue')
axes=plt.gca()
#axes.set_xlim(1, 2)
axes.set_ylim(0, 100)
plt.xlabel("Distance (Angström)")
plt.title("GMM des distances entre atomes des cycles pyrimidines", fontsize=10)
plt.savefig(runDir + "/results/figures/GMM/all-atoms/distances/pyrimidines/" + "GMM des distances entre atomes des cycles pyrimidines.png")
plt.close()
os.chdir(runDir)
setproctitle("GMM (all atoms, distances) finished")
@trace_unhandled_exceptions
def gmm_aa_torsions():
"""
Separates the torsion angle measurements by angle type and plots the figures representing the data
"""
setproctitle("GMM (all atoms, torsions)")
# we create lists to store the values of each angle
alpha=[]
beta=[]
gamma=[]
delta=[]
epsilon=[]
zeta=[]
chi = []
for angles_deg in conversion_angles(runDir + "/results/RNANet.db"):
alpha.append(angles_deg[2])
beta.append(angles_deg[3])
gamma.append(angles_deg[4])
delta.append(angles_deg[5])
epsilon.append(angles_deg[6])
zeta.append(angles_deg[7])
chi.append(angles_deg[8])
# we remove the null values
alpha=[i for i in alpha if i != None]
beta=[i for i in beta if i != None]
gamma=[i for i in gamma if i != None]
delta=[i for i in delta if i != None]
epsilon=[i for i in epsilon if i != None]
zeta=[i for i in zeta if i != None]
chi=[i for i in chi if i != None]
os.makedirs(runDir + "/results/figures/GMM/all-atoms/torsions/", exist_ok=True)
os.chdir(runDir + "/results/figures/GMM/all-atoms/torsions/")
"""
We plot the GMMs with histogram for each angle
We create the corresponding json with the means and standard deviations of each Gaussian
We draw the figure grouping the GMMs of all angles without histogram to compare them with each other
"""
GMM_histo(alpha, "Alpha", toric=True)
GMM_histo(beta, "Beta", toric=True)
GMM_histo(gamma, "Gamma", toric=True)
GMM_histo(delta, "Delta", toric=True)
GMM_histo(epsilon, "Epsilon", toric=True)
GMM_histo(zeta, "Zeta", toric=True)
GMM_histo(chi, "Xhi", toric=True)
GMM_histo(alpha, "Alpha", toric=True, hist=False, couleur='red')
GMM_histo(beta, "Beta", toric=True, hist=False, couleur='firebrick')
GMM_histo(gamma, "Gamma", toric=True, hist=False, couleur='limegreen')
GMM_histo(delta, "Delta", toric=True, hist=False, couleur='darkslateblue')
GMM_histo(epsilon, "Epsilon", toric=True, hist=False, couleur='goldenrod')
GMM_histo(zeta, "Zeta", toric=True, hist=False, couleur='teal')
GMM_histo(chi, "Xhi", toric=True, hist=False, couleur='hotpink')
plt.xlabel("Angle(Degré)")
plt.title("GMM des angles de torsion")
plt.savefig("GMM des angles de torsion.png")
plt.close()
os.chdir(runDir)
setproctitle("GMM (all atoms, torsions) finished")
@trace_unhandled_exceptions
def gmm_wadley():
setproctitle("GMM (Pyle model)")
# Distances
df = pd.read_csv(os.path.abspath(runDir + "/results/geometry/Pyle/distances/distances_wadley.csv"))
p_c1p = list(df["C1'-P"][~ np.isnan(df["C1'-P"])])
c1p_p = list(df["P-C1'"][~ np.isnan(df["P-C1'"])])
p_c4p = list(df["C4'-P"][~ np.isnan(df["C4'-P"])])
c4p_p = list(df["P-C4'"][~ np.isnan(df["P-C4'"])])
os.makedirs(runDir + "/results/figures/GMM/Pyle/distances/", exist_ok=True)
os.chdir(runDir + "/results/figures/GMM/Pyle/distances/")
GMM_histo(p_c1p, "P-C1'")
GMM_histo(c1p_p, "C1'-P")
GMM_histo(p_c1p, "P-C4'")
GMM_histo(c1p_p, "C4'-P")
GMM_histo(p_c1p, "P-C4'", toric=False, hist=False, couleur='gold')
GMM_histo(c1p_p, "C4'-P", toric=False, hist=False, couleur='indigo')
GMM_histo(p_c1p, "P-C1'", toric=False, hist=False, couleur='firebrick')
GMM_histo(c1p_p, "C1'-P", toric=False, hist=False, couleur='seagreen')
plt.xlabel("Distance(Angström)")
plt.title("GMM des distances (Pyle model)")
plt.savefig("GMM des distances (Pyle model).png")
plt.close()
# Flat Angles
df = pd.read_csv(os.path.abspath(runDir + "/results/geometry/Pyle/angles/angles_plans_wadley.csv"))
p_c1p_psuiv = list(df["P-C1'-P°"][~ np.isnan(df["P-C1'-P°"])])
c1p_psuiv_c1psuiv = list(df["C1'-P°-C1'°"][~ np.isnan(df["C1'-P°-C1'°"])])
os.makedirs(runDir + "/results/figures/GMM/Pyle/angles/", exist_ok=True)
os.chdir(runDir + "/results/figures/GMM/Pyle/angles/")
GMM_histo(p_c1p_psuiv, "P-C1'-P°", toric=True)
GMM_histo(c1p_psuiv_c1psuiv, "C1'-P°-C1'°", toric=True)
GMM_histo(p_c1p_psuiv, "P-C1'-P°", toric=True, hist=False, couleur='firebrick')
GMM_histo(c1p_psuiv_c1psuiv, "C1'-P°-C1'°", toric=True, hist=False, couleur='seagreen')
plt.xlabel("Angle(Degré)")
plt.title("GMM des angles plans (Pyle model)")
plt.savefig("GMM des angles plans (Pyle model).png")
plt.close()
# Torsion anfles
eta=[]
theta=[]
eta_prime=[]
theta_prime=[]
eta_base=[]
theta_base=[]
for angles_deg in conversion_eta_theta(runDir + "/results/RNANet.db"):
eta.append(angles_deg[2])
theta.append(angles_deg[3])
eta_prime.append(angles_deg[4])
theta_prime.append(angles_deg[5])
eta_base.append(angles_deg[6])
theta_base.append(angles_deg[7])
eta=[i for i in eta if i != None]
theta=[i for i in theta if i != None]
eta_prime=[i for i in eta_prime if i != None]
theta_prime=[i for i in theta_prime if i != None]
eta_base=[i for i in eta_base if i != None]
theta_base=[i for i in theta_base if i != None]
os.makedirs(runDir + "/results/figures/GMM/Pyle/pseudotorsions/", exist_ok=True)
os.chdir(runDir + "/results/figures/GMM/Pyle/pseudotorsions/")
GMM_histo(eta, "Eta", toric=True)
GMM_histo(theta, "Theta", toric=True)
GMM_histo(eta_prime, "Eta'", toric=True)
GMM_histo(theta_prime, "Theta'", toric=True)
GMM_histo(eta_base, "Eta''", toric=True)
GMM_histo(theta_base, "Theta''", toric=True)
GMM_histo(eta, "Eta", toric=True, hist=False, couleur='mediumaquamarine')
GMM_histo(theta, "Theta", toric=True, hist=False, couleur='darkorchid')
GMM_histo(eta_prime, "Eta'", toric=True, hist=False, couleur='cyan')
GMM_histo(theta_prime, "Theta'", toric=True, hist=False, couleur='crimson')
GMM_histo(eta_base, "Eta''", toric=True, hist=False, couleur='royalblue')
GMM_histo(theta_base, "Theta''", toric=True, hist=False, couleur='palevioletred')
plt.xlabel("Angle(Degré)")
plt.title("GMM des angles de pseudotorsion")
plt.savefig("GMM des angles de pseudotorsion.png")
plt.close()
os.chdir(runDir)
setproctitle("GMM (Pyle model) finished")
@trace_unhandled_exceptions
def gmm_hrna():
"""
Draw the figures representing the data on the measurements between atoms of the HiRE-RNA model
"""
setproctitle("GMM (HiRE-RNA)")
# Distances
df = pd.read_csv(os.path.abspath(runDir + "/results/geometry/HiRE-RNA/distances/dist_atoms_hire_RNA.csv"))
last_c4p_p = list(df["C4'-P"][~ np.isnan(df["C4'-P"])])
p_o5p = list(df["P-O5'"][~ np.isnan(df["P-O5'"])])
o5p_c5p = list(df["O5'-C5'"][~ np.isnan(df["O5'-C5'"])])
c5p_c4p = list(df["C5'-C4'"][~ np.isnan(df["C5'-C4'"])])
c4p_c1p = list(df["C4'-C1'"][~ np.isnan(df["C4'-C1'"])])
c1p_b1 = list(df["C1'-B1"][~ np.isnan(df["C1'-B1"])])
b1_b2 = list(df["B1-B2"][~ np.isnan(df["B1-B2"])])
os.makedirs(runDir + "/results/figures/GMM/HiRE-RNA/distances/", exist_ok=True)
os.chdir(runDir + "/results/figures/GMM/HiRE-RNA/distances/")
GMM_histo(o5p_c5p, "O5'-C5'")
GMM_histo(b1_b2, "B1-B2")
GMM_histo(c1p_b1, "C1'-B1")
GMM_histo(c5p_c4p, "C5'-C4'")
GMM_histo(c4p_c1p, "C4'-C1'")
GMM_histo(p_o5p, "P-O5'")
GMM_histo(last_c4p_p, "C4'-P")
GMM_histo(o5p_c5p, "O5'-C5'", toric=False, hist=False, couleur='lightcoral')
GMM_histo(b1_b2, "B1-B2", toric=False, hist=False, couleur='limegreen')
GMM_histo(c1p_b1, "C1'-B1", toric=False, hist=False, couleur='tomato')
GMM_histo(c5p_c4p, "C5'-C4'", toric=False, hist=False, couleur='aquamarine')
GMM_histo(c4p_c1p, "C4'-C1'", toric=False, hist=False, couleur='goldenrod')
GMM_histo(p_o5p, "P-O5'", toric=False, hist=False, couleur='darkcyan')
GMM_histo(last_c4p_p, "C4'-P", toric=False, hist=False, couleur='deeppink')
axes = plt.gca()
axes.set_ylim(0, 100)
plt.xlabel("Distance (Angström)")
plt.title("GMM des distances entre atomes HiRE-RNA")
plt.savefig(runDir + "/results/figures/GMM/HiRE-RNA/distances/GMM des distances entre atomes HiRE-RNA.png")
plt.close()
# Angles
df = pd.read_csv(os.path.abspath(runDir + "/results/geometry/HiRE-RNA/angles/angles_hire_RNA.csv"))
lastc4p_p_o5p = list(df["C4'-P-O5'"][~ np.isnan(df["C4'-P-O5'"])])
lastc1p_lastc4p_p = list(df["C1'-C4'-P"][~ np.isnan(df["C1'-C4'-P"])])
lastc5p_lastc4p_p = list(df["C5'-C4'-P"][~ np.isnan(df["C5'-C4'-P"])])
p_o5p_c5p = list(df["P-O5'-C5'"][~ np.isnan(df["P-O5'-C5'"])])
o5p_c5p_c4p = list(df["O5'-C5'-C4'"][~ np.isnan(df["O5'-C5'-C4'"])])
c5p_c4p_c1p = list(df["C5'-C4'-C1'"][~ np.isnan(df["C5'-C4'-C1'"])])
c4p_c1p_b1 = list(df["C4'-C1'-B1"][~ np.isnan(df["C4'-C1'-B1"])])
c1p_b1_b2 = list(df["C1'-B1-B2"][~ np.isnan(df["C1'-B1-B2"])])
os.makedirs(runDir + "/results/figures/GMM/HiRE-RNA/angles/", exist_ok=True)
os.chdir(runDir + "/results/figures/GMM/HiRE-RNA/angles/")
GMM_histo(lastc4p_p_o5p, "C4'-P-O5'", toric=True)
GMM_histo(lastc1p_lastc4p_p, "C1'-C4'-P", toric=True)
GMM_histo(lastc5p_lastc4p_p, "C5'-C4'-P", toric=True)
GMM_histo(p_o5p_c5p, "P-O5'-C5'", toric=True)
GMM_histo(o5p_c5p_c4p, "O5'-C5'-C4'", toric=True)
GMM_histo(c5p_c4p_c1p, "C5'-C4'-C1'", toric=True)
GMM_histo(c4p_c1p_b1, "C4'-C1'-B1", toric=True)
GMM_histo(c1p_b1_b2, "C1'-B1-B2", toric=True)
GMM_histo(lastc4p_p_o5p, "C4'-P-O5'", toric=True, hist=False, couleur='lightcoral')
GMM_histo(lastc1p_lastc4p_p, "C1'-C4'-P", toric=True, hist=False, couleur='limegreen')
GMM_histo(lastc5p_lastc4p_p, "C5'-C4'-P", toric=True, hist=False, couleur='tomato')
GMM_histo(p_o5p_c5p, "P-O5'-C5'", toric=True, hist=False, couleur='aquamarine')
GMM_histo(o5p_c5p_c4p, "O5'-C5'-C4'", toric=True, hist=False, couleur='goldenrod')
GMM_histo(c5p_c4p_c1p, "C5'-C4'-C1'", toric=True, hist=False, couleur='darkcyan')
GMM_histo(c4p_c1p_b1, "C4'-C1'-B1", toric=True, hist=False, couleur='deeppink')
GMM_histo(c1p_b1_b2, "C1'-B1-B2", toric=True, hist=False, couleur='indigo')
axes = plt.gca()
axes.set_ylim(0, 100)
plt.xlabel("Angle (Degré)")
plt.title("GMM des angles entre atomes HiRE-RNA")
plt.savefig(runDir + "/results/figures/GMM/HiRE-RNA/angles/GMM des angles entre atomes HiRE-RNA.png")
plt.close()
# Torsions
df = pd.read_csv(os.path.abspath(runDir + "/results/geometry/HiRE-RNA/torsions/angles_torsion_hire_RNA.csv"))
p_o5_c5_c4 = list(df["P-O5'-C5'-C4'"][~ np.isnan(df["P-O5'-C5'-C4'"])])
o5_c5_c4_c1 = list(df["O5'-C5'-C4'-C1'"][~ np.isnan(df["O5'-C5'-C4'-C1'"])])
c5_c4_c1_b1 = list(df["C5'-C4'-C1'-B1"][~ np.isnan(df["C5'-C4'-C1'-B1"])])
c4_c1_b1_b2 = list(df["C4'-C1'-B1-B2"][~ np.isnan(df["C4'-C1'-B1-B2"])])
o5_c5_c4_psuiv = list(df["O5'-C5'-C4'-P°"][~ np.isnan(df["O5'-C5'-C4'-P°"])])
c5_c4_psuiv_o5suiv = list(df["C5'-C4'-P°-O5'°"][~ np.isnan(df["C5'-C4'-P°-O5'°"])])
c4_psuiv_o5suiv_c5suiv = list(df["C4'-P°-O5'°-C5'°"][~ np.isnan(df["C4'-P°-O5'°-C5'°"])])
c1_c4_psuiv_o5suiv = list(df["C1'-C4'-P°-O5'°"][~ np.isnan(df["C1'-C4'-P°-O5'°"])])
os.makedirs(runDir + "/results/figures/GMM/HiRE-RNA/torsions/", exist_ok=True)
os.chdir(runDir + "/results/figures/GMM/HiRE-RNA/torsions/")
GMM_histo(p_o5_c5_c4, "P-O5'-C5'-C4'", toric=True)
GMM_histo(o5_c5_c4_c1, "O5'-C5'-C4'-C1'", toric=True)
GMM_histo(c5_c4_c1_b1, "C5'-C4'-C1'-B1", toric=True)
GMM_histo(c4_c1_b1_b2, "C4'-C1'-B1-B2", toric=True)
GMM_histo(o5_c5_c4_psuiv, "O5'-C5'-C4'-P°", toric=True)
GMM_histo(c5_c4_psuiv_o5suiv, "C5'-C4'-P°-O5'°", toric=True)
GMM_histo(c4_psuiv_o5suiv_c5suiv, "C4'-P°-O5'°-C5'°", toric=True)
GMM_histo(c1_c4_psuiv_o5suiv, "C1'-C4'-P°-O5'°", toric=True)
GMM_histo(p_o5_c5_c4, "P-O5'-C5'-C4'", toric=True, hist=False, couleur='darkred')
GMM_histo(o5_c5_c4_c1, "O5'-C5'-C4'-C1'", toric=True, hist=False, couleur='chocolate')
GMM_histo(c5_c4_c1_b1, "C5'-C4'-C1'-B1", toric=True, hist=False, couleur='mediumvioletred')
GMM_histo(c4_c1_b1_b2, "C4'-C1'-B1-B2", toric=True, hist=False, couleur='cadetblue')
GMM_histo(o5_c5_c4_psuiv, "O5'-C5'-C4'-P°", toric=True, hist=False, couleur='darkkhaki')
GMM_histo(c5_c4_psuiv_o5suiv, "C5'-C4'-P°-O5'°", toric=True, hist=False, couleur='springgreen')
GMM_histo(c4_psuiv_o5suiv_c5suiv, "C4'-P°-O5'°-C5'°", toric=True, hist=False, couleur='indigo')
GMM_histo(c1_c4_psuiv_o5suiv, "C1'-C4'-P°-O5'°", toric=True, hist=False, couleur='gold')
plt.xlabel("Angle(Degré)")
plt.title("GMM des angles de torsion (hire-RNA)")
plt.savefig("GMM des angles de torsion (hire-RNA).png")
plt.close()
os.chdir(runDir)
setproctitle("GMM (HiRE-RNA) finished")
@trace_unhandled_exceptions
def gmm_hrna_basepair_type(type_LW, angle_1, angle_2, angle_3, angle_4, distance):
"""
function to plot the statistical figures you want
By type of pairing:
Superposition of GMMs of plane angles
Superposition of the histogram and the GMM of the distances
all in the same window
"""
setproctitle(f"GMM (HiRE-RNA {type_LW} basepairs)")
figure = plt.figure(figsize = (10, 10))
plt.gcf().subplots_adjust(left = 0.1, bottom = 0.1, right = 0.9, top = 0.9, wspace = 0, hspace = 0.5)
plt.subplot(2, 1, 1)
if len(angle_1) > 0 :
GMM_histo(angle_1, "C4'-C1'-B1", toric=True, hist=False, couleur='cyan' )
if len(angle_2) > 0 :
GMM_histo(angle_2, "C1'-B1-B1pair", toric=True, hist=False, couleur='magenta')
if len(angle_3) > 0 :
GMM_histo(angle_3, "B1-B1pair-C1'pair", toric=True, hist=False, couleur="yellow")
if len(angle_4) > 0 :
GMM_histo(angle_4, "B1pair-C1'pair-C4'pair", toric=True, hist=False, couleur='olive')
plt.xlabel("Angle(degré)")
plt.title("GMM des angles plans pour les measure_hrna_basepairs " +type_LW , fontsize=10)
plt.subplot(2, 1, 2)
if len(distance)>0 :
GMM_histo(distance, "Distance pointes " + type_LW, save=False)
plt.savefig("Mesures measure_hrna_basepairs " +type_LW+ ".png" )
plt.close()
setproctitle(f"GMM (HiRE-RNA {type_LW} basepairs) finished")
@trace_unhandled_exceptions
def gmm_hrna_basepairs():
setproctitle("GMM (HiRE-RNA basepairs)")
df=pd.read_csv(os.path.abspath(runDir + "/results/geometry/HiRE-RNA/basepairs/basepairs.csv"))
cWW=df[df['type LW']=='cWW']
cWW_dist=list(cWW["Distance"])
cWW_angle_1=list(cWW["C4'-C1'-B1"])
cWW_angle_2=list(cWW["C1'-B1-B1pair"])
cWW_angle_3=list(cWW["B1-B1pair-C1'pair"])
cWW_angle_4=list(cWW["B1pair-C1'pair-C4'pair"])
tWW=df[df['type LW']=='tWW']
tWW_dist=list(tWW["Distance"])
tWW_angle_1=list(tWW["C4'-C1'-B1"])
tWW_angle_2=list(tWW["C1'-B1-B1pair"])
tWW_angle_3=list(tWW["B1-B1pair-C1'pair"])
tWW_angle_4=list(tWW["B1pair-C1'pair-C4'pair"])
cWH=df[df['type LW']=='cWH']
cWH_dist=list(cWH["Distance"])
cWH_angle_1=list(cWH["C4'-C1'-B1"])
cWH_angle_2=list(cWH["C1'-B1-B1pair"])
cWH_angle_3=list(cWH["B1-B1pair-C1'pair"])
cWH_angle_4=list(cWH["B1pair-C1'pair-C4'pair"])
tWH=df[df['type LW']=='tWH']
tWH_dist=list(tWH["Distance"])
tWH_angle_1=list(tWH["C4'-C1'-B1"])
tWH_angle_2=list(tWH["C1'-B1-B1pair"])
tWH_angle_3=list(tWH["B1-B1pair-C1'pair"])
tWH_angle_4=list(tWH["B1pair-C1'pair-C4'pair"])
cHW=df[df['type LW']=='cHW']
cHW_dist=list(cHW["Distance"])
cHW_angle_1=list(cHW["C4'-C1'-B1"])
cHW_angle_2=list(cHW["C1'-B1-B1pair"])
cHW_angle_3=list(cHW["B1-B1pair-C1'pair"])
cHW_angle_4=list(cHW["B1pair-C1'pair-C4'pair"])
tHW=df[df['type LW']=='tHW']
tHW_dist=list(tHW["Distance"])
tHW_angle_1=list(tHW["C4'-C1'-B1"])
tHW_angle_2=list(tHW["C1'-B1-B1pair"])
tHW_angle_3=list(tHW["B1-B1pair-C1'pair"])
tHW_angle_4=list(tHW["B1pair-C1'pair-C4'pair"])
cWS=df[df['type LW']=='cWS']
cWS_dist=list(cWS["Distance"])
cWS_angle_1=list(cWS["C4'-C1'-B1"])
cWS_angle_2=list(cWS["C1'-B1-B1pair"])
cWS_angle_3=list(cWS["B1-B1pair-C1'pair"])
cWS_angle_4=list(cWS["B1pair-C1'pair-C4'pair"])
tWS=df[df['type LW']=='tWS']
tWS_dist=list(tWS["Distance"])
tWS_angle_1=list(tWS["C4'-C1'-B1"])
tWS_angle_2=list(tWS["C1'-B1-B1pair"])
tWS_angle_3=list(tWS["B1-B1pair-C1'pair"])
tWS_angle_4=list(tWS["B1pair-C1'pair-C4'pair"])
cSW=df[df['type LW']=='cSW']
cSW_dist=list(cSW["Distance"])
cSW_angle_1=list(cSW["C4'-C1'-B1"])
cSW_angle_2=list(cSW["C1'-B1-B1pair"])
cSW_angle_3=list(cSW["B1-B1pair-C1'pair"])
cSW_angle_4=list(cSW["B1pair-C1'pair-C4'pair"])
tSW=df[df['type LW']=='tSW']
tSW_dist=list(tSW["Distance"])
tSW_angle_1=list(tSW["C4'-C1'-B1"])
tSW_angle_2=list(tSW["C1'-B1-B1pair"])
tSW_angle_3=list(tSW["B1-B1pair-C1'pair"])
tSW_angle_4=list(tSW["B1pair-C1'pair-C4'pair"])
cHH=df[df['type LW']=='cHH']
cHH_dist=list(cHH["Distance"])
cHH_angle_1=list(cHH["C4'-C1'-B1"])
cHH_angle_2=list(cHH["C1'-B1-B1pair"])
cHH_angle_3=list(cHH["B1-B1pair-C1'pair"])
cHH_angle_4=list(cHH["B1pair-C1'pair-C4'pair"])
tHH=df[df['type LW']=='tHH']
tHH_dist=list(tHH["Distance"])
tHH_angle_1=list(tHH["C4'-C1'-B1"])
tHH_angle_2=list(tHH["C1'-B1-B1pair"])
tHH_angle_3=list(tHH["B1-B1pair-C1'pair"])
tHH_angle_4=list(tHH["B1pair-C1'pair-C4'pair"])
cSH=df[df['type LW']=='cSH']
cSH_dist=list(cSH["Distance"])
cSH_angle_1=list(cSH["C4'-C1'-B1"])
cSH_angle_2=list(cSH["C1'-B1-B1pair"])
cSH_angle_3=list(cSH["B1-B1pair-C1'pair"])
cSH_angle_4=list(cSH["B1pair-C1'pair-C4'pair"])
tSH=df[df['type LW']=='tSH']
tSH_dist=list(tSH["Distance"])
tSH_angle_1=list(tSH["C4'-C1'-B1"])
tSH_angle_2=list(tSH["C1'-B1-B1pair"])
tSH_angle_3=list(tSH["B1-B1pair-C1'pair"])
tSH_angle_4=list(tSH["B1pair-C1'pair-C4'pair"])
cHS=df[df['type LW']=='cHS']
cHS_dist=list(cHS["Distance"])
cHS_angle_1=list(cHS["C4'-C1'-B1"])
cHS_angle_2=list(cHS["C1'-B1-B1pair"])
cHS_angle_3=list(cHS["B1-B1pair-C1'pair"])
cHS_angle_4=list(cHS["B1pair-C1'pair-C4'pair"])
tHS=df[df['type LW']=='tHS']
tHS_dist=list(tHS["Distance"])
tHS_angle_1=list(tHS["C4'-C1'-B1"])
tHS_angle_2=list(tHS["C1'-B1-B1pair"])
tHS_angle_3=list(tHS["B1-B1pair-C1'pair"])
tHS_angle_4=list(tHS["B1pair-C1'pair-C4'pair"])
cSS=df[df['type LW']=='cSS']
cSS_dist=list(cSS["Distance"])
cSS_angle_1=list(cSS["C4'-C1'-B1"])
cSS_angle_2=list(cSS["C1'-B1-B1pair"])
cSS_angle_3=list(cSS["B1-B1pair-C1'pair"])
cSS_angle_4=list(cSS["B1pair-C1'pair-C4'pair"])
tSS=df[df['type LW']=='tSS']
tSS_dist=list(tSS["Distance"])
tSS_angle_1=list(tSS["C4'-C1'-B1"])
tSS_angle_2=list(tSS["C1'-B1-B1pair"])
tSS_angle_3=list(tSS["B1-B1pair-C1'pair"])
tSS_angle_4=list(tSS["B1pair-C1'pair-C4'pair"])
os.makedirs(runDir + "/results/figures/GMM/HiRE-RNA/basepairs/", exist_ok=True)
os.chdir(runDir + "/results/figures/GMM/HiRE-RNA/basepairs/")
gmm_hrna_basepair_type('cWW', cWW_angle_1, cWW_angle_2, cWW_angle_3, cWW_angle_4, cWW_dist)
gmm_hrna_basepair_type('tWW', tWW_angle_1, tWW_angle_2, tWW_angle_3, tWW_angle_4, tWW_dist)
gmm_hrna_basepair_type('cWH', cWH_angle_1, cWH_angle_2, cWH_angle_3, cWH_angle_4, cWH_dist)
gmm_hrna_basepair_type('tWH', tWH_angle_1, tWH_angle_2, tWH_angle_3, tWH_angle_4, tWH_dist)
gmm_hrna_basepair_type('cHW', cHW_angle_1, cHW_angle_2, cHW_angle_3, cHW_angle_4, cHW_dist)
gmm_hrna_basepair_type('tHW', tHW_angle_1, tHW_angle_2, tHW_angle_3, tHW_angle_4, tHW_dist)
gmm_hrna_basepair_type('tWS', tWS_angle_1, tWS_angle_2, tWS_angle_3, tWS_angle_4, tWS_dist)
gmm_hrna_basepair_type('cWS', cWS_angle_1, cWS_angle_2, cWS_angle_3, cWS_angle_4, cWS_dist)
gmm_hrna_basepair_type('tSW', tSW_angle_1, tSW_angle_2, tSW_angle_3, tSW_angle_4, tSW_dist)
gmm_hrna_basepair_type('cSW', cSW_angle_1, cSW_angle_2, cSW_angle_3, cSW_angle_4, cSW_dist)
gmm_hrna_basepair_type('cHH', cHH_angle_1, cHH_angle_2, cHH_angle_3, cHH_angle_4, cHH_dist)
gmm_hrna_basepair_type('tHH', tHH_angle_1, tHH_angle_2, tHH_angle_3, tHH_angle_4, tHH_dist)
gmm_hrna_basepair_type('cSH', cSH_angle_1, cSH_angle_2, cSH_angle_3, cSH_angle_4, cSH_dist)
gmm_hrna_basepair_type('tSH', tSH_angle_1, tSH_angle_2, tSH_angle_3, tSH_angle_4, tSH_dist)
gmm_hrna_basepair_type('cHS', cHS_angle_1, cHS_angle_2, cHS_angle_3, cHS_angle_4, cHS_dist)
gmm_hrna_basepair_type('tHS', tHS_angle_1, tHS_angle_2