DeepGONet.py 24.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
# Useful packages

import warnings
import os
import time
import signal
import sys
import copy
import h5py
import pickle
import random
from tqdm import tqdm

import numpy as np
import matplotlib.pyplot as plt
import seaborn
import pandas as pd
import tensorflow as tf
from tensorflow.keras.utils import to_categorical


# Experiment setting
FLAGS = tf.app.flags.FLAGS 

# -- Configuration of the environnement --
tf.app.flags.DEFINE_string('log_dir', "../log", "log_dir")
tf.app.flags.DEFINE_string('dir_data', "", "repository for all the files needed for the training and the evaluation")
tf.app.flags.DEFINE_bool('save', False, "Do you need to save the model?")
tf.app.flags.DEFINE_bool('restore', False, "Do you want to restore a previous model?")
tf.app.flags.DEFINE_bool('is_training', True, "Is the model trainable?")
tf.app.flags.DEFINE_string('processing', "train", "What to do with the model? {train,evaluate,predict}")

# -- Architecture of the neural network --
tf.app.flags.DEFINE_integer('n_input', 54675, "number of features")
tf.app.flags.DEFINE_integer('n_classes', 1, "number of classes")
tf.app.flags.DEFINE_integer('n_layers', 6, "number of layers")
tf.app.flags.DEFINE_integer('n_hidden_1', 1574, "number of neurons for the first hidden layer") #Level 7
tf.app.flags.DEFINE_integer('n_hidden_2', 1386, "number of neurons for the second hidden layer") #Level 6
tf.app.flags.DEFINE_integer('n_hidden_3', 951, "number of neurons for the third hidden layer") #Level 5
tf.app.flags.DEFINE_integer('n_hidden_4', 515, "number of neurons for the fourth hidden layer") #Level 4
tf.app.flags.DEFINE_integer('n_hidden_5', 255, "number of neurons for the fifth hidden layer") #Level 3
tf.app.flags.DEFINE_integer('n_hidden_6', 90, "number of neurons for the sixth hidden layer") #Level 2

# -- Learning and Hyperparameters --
tf.app.flags.DEFINE_string('lr_method', 'adam', "optimizer {adam, momentum, adagrad, rmsprop}")
tf.app.flags.DEFINE_float('learning_rate', 0.001, "initial learning rate")
tf.app.flags.DEFINE_bool('bn', False, "use of batch normalization")
tf.app.flags.DEFINE_float('keep_prob', 0.4, "keep probability for the dropout")
tf.app.flags.DEFINE_string('type_training', 'LGO', "regularization term {"", LGO, L2, L1}")
tf.app.flags.DEFINE_float('alpha', 1, "value of the hyperparameter alpha")
tf.app.flags.DEFINE_integer('display_step', 5, "when to print the performances")
tf.app.flags.DEFINE_integer('batch_size', 2**9, "the number of examples in a batch")
tf.app.flags.DEFINE_integer('epochs', 20, "the number of epochs for training")
tf.app.flags.DEFINE_string('GPU_device', '/gpu:0', "GPU device")

from base_model import BaseModel

def l1_loss_func(x):
    return tf.reduce_sum(tf.math.abs(x)) 

def l2_loss_func(x):
    return tf.reduce_sum(tf.square(x))


def train(save_dir):

    warnings.filterwarnings("ignore")
    os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"]=FLAGS.GPU_device[len(FLAGS.GPU_device)-1]
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 

    # Load the useful files to build the architecture
    print("Loading the connection matrix...")
    start = time.time()

    adj_matrix = pd.read_csv(os.path.abspath(os.path.join(FLAGS.dir_data,"adj_matrix.csv")),index_col=0)
    first_matrix_connection = pd.read_csv(os.path.abspath(os.path.join(FLAGS.dir_data,"first_matrix_connection_GO.csv")),index_col=0)
    csv_go = pd.read_csv(os.path.abspath(os.path.join(FLAGS.dir_data,"go_level.csv")),index_col=0)

    connection_matrix = []
    connection_matrix.append(np.array(first_matrix_connection.values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(7)].loc[lambda x: x==1].index,csv_go[str(6)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(6)].loc[lambda x: x==1].index,csv_go[str(5)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(5)].loc[lambda x: x==1].index,csv_go[str(4)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(4)].loc[lambda x: x==1].index,csv_go[str(3)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(3)].loc[lambda x: x==1].index,csv_go[str(2)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.ones((FLAGS.n_hidden_6, FLAGS.n_classes),dtype=np.float32))

    end = time.time()
    elapsed=end - start
    print("Total time: {}h {}min {}sec".format(time.gmtime(elapsed).tm_hour,
    time.gmtime(elapsed).tm_min,
    time.gmtime(elapsed).tm_sec))

    # Load the data
    print("Loading the data...")

    start = time.time()
    loaded = np.load(os.path.abspath(os.path.join(FLAGS.dir_data,"X_train.npz")))
    X_train = loaded['x']
    y_train = loaded['y']
    if FLAGS.n_classes>=2:
        y_train=to_categorical(y_train)

    loaded = np.load(os.path.abspath(os.path.join(FLAGS.dir_data,"X_test.npz")))
    X_test = loaded['x']
    y_test = loaded['y']
    if FLAGS.n_classes>=2:
        y_test=to_categorical(y_test)

    end = time.time()
    elapsed=end - start
    print("Total time: {}h {}min {}sec".format(time.gmtime(elapsed).tm_hour,
    time.gmtime(elapsed).tm_min,
    time.gmtime(elapsed).tm_sec))


    # Launch the model
    print("Launching the learning")
    if FLAGS.type_training != "":
        print("with {} and ALPHA={}".format(FLAGS.type_training,FLAGS.alpha))

    tf.reset_default_graph() 
   
    # -- Inputs of the model --
    X = tf.placeholder(tf.float32, shape=[None, FLAGS.n_input])
    Y = tf.placeholder(tf.float32, shape=[None, FLAGS.n_classes])

    # -- Hyperparameters of the neural network --
    is_training = tf.placeholder(tf.bool,name="is_training") # Batch Norm hyperparameter
    learning_rate = tf.placeholder(tf.float32, name="learning_rate") # Optimizer hyperparameter
    keep_prob = tf.placeholder(tf.float32, name="keep_prob") # Dropout hyperparameter
    total_batches=len(X_train)//FLAGS.batch_size

    network=BaseModel(X=X,n_input=FLAGS.n_input,n_classes=FLAGS.n_classes,
        n_hidden_1=FLAGS.n_hidden_1,n_hidden_2=FLAGS.n_hidden_2,n_hidden_3=FLAGS.n_hidden_3,n_hidden_4=FLAGS.n_hidden_4,
        n_hidden_5=FLAGS.n_hidden_5,n_hidden_6=FLAGS.n_hidden_6,keep_prob=keep_prob,is_training=is_training) # Model instantiation
    pred = network()

    # -- Loss function --

    # ---- CE loss  ----
    # Compute the average of the loss across all the dimensions
    if FLAGS.n_classes>=2:
        ce_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=Y)) 
    else:
        ce_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pred, labels=Y))
    
    # ---- Regularization loss (LGO, L2, L1) ----
    additional_loss = 0
    if FLAGS.type_training=="LGO":
        for idx,weight in enumerate(network.weights.values()):
            additional_loss+=l2_loss_func(weight*(1-connection_matrix[idx])) # Penalization of the noGO connections
    elif FLAGS.type_training=="L2" :
        for weight in network.weights.values():
            additional_loss += l2_loss_func(weight)
    elif FLAGS.type_training=="L1" :
        for idx,weight in enumerate(network.weights.values()):
            additional_loss+=l1_loss_func(weight)
            
    # ---- Total loss  ----
    if FLAGS.type_training!='' :
        total_loss = ce_loss + FLAGS.alpha*additional_loss
    else:
        total_loss = ce_loss
    
    
    # ---- Norm of the weights of the connections ----
    norm_no_go_connections=0
    norm_go_connections=0
    for idx,weight in enumerate(list(network.weights.values())[:-1]):
        norm_no_go_connections+=tf.norm((weight*(1-connection_matrix[idx])),ord=1)/np.count_nonzero(1-connection_matrix[idx])
        norm_go_connections+=tf.norm((weight*connection_matrix[idx]),ord=1)/np.count_nonzero(connection_matrix[idx])
    norm_no_go_connections/=FLAGS.n_layers
    norm_go_connections/=FLAGS.n_layers

    # -- Optimizer --
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        if FLAGS.lr_method=="adam":
            trainer = tf.train.AdamOptimizer(learning_rate = learning_rate)
        elif FLAGS.lr_method=="momentum":
            trainer = tf.train.MomentumOptimizer(learning_rate = learning_rate, momentum=0.09, use_nesterov=True)
        elif FLAGS.lr_method=="adagrad":
            trainer = tf.train.AdagradOptimizer(learning_rate=learning_rate)
        elif FLAGS.lr_method=="rmsprop":
            trainer = tf.train.RMSPropOptimizer(learning_rate = learning_rate)
        optimizer = trainer.minimize(total_loss)

    # -- Compute the prediction error --
    if FLAGS.n_classes>=2:
        correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(Y, 1))
    else:
        sig_pred=tf.nn.sigmoid(pred)
        sig_pred=tf.cast(sig_pred>0.5,dtype=tf.int64)
        ground_truth=tf.cast(Y,dtype=tf.int64)
        correct_prediction = tf.equal(sig_pred,ground_truth)

    # -- Calculate the accuracy across all the given batches and average them out --
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  

    # -- Initialize the variables --
    init = tf.global_variables_initializer()

    # -- Configure the use of the gpu --
    config = tf.ConfigProto(log_device_placement=False,allow_soft_placement=True)
    #config.gpu_options.allow_growth = True, log_device_placement=True

    if FLAGS.save or FLAGS.restore : saver = tf.train.Saver()

    start = time.time()

    with tf.device(FLAGS.GPU_device):
        with tf.Session(config=config) as sess: 
            sess.run(init)

            train_c_accuracy=[]
            train_c_total_loss=[]

            test_c_accuracy=[]
            test_c_total_loss=[]

            c_l1_norm_go=[]
            c_l1_norm_no_go=[]

            if FLAGS.type_training!="":
                train_c_ce_loss=[]
                test_c_ce_loss=[]
                train_c_additional_loss=[]
                test_c_additional_loss=[]

            for epoch in tqdm(np.arange(0,FLAGS.epochs)):

                index = np.arange(X_train.shape[0])
                np.random.shuffle(index)
                batch_X = np.array_split(X_train[index], total_batches)
                batch_Y = np.array_split(y_train[index], total_batches)

                # -- Optimization --
                for batch in range(total_batches):
                    batch_x,batch_y=batch_X[batch],batch_Y[batch]
                    sess.run(optimizer, feed_dict={X: batch_x,Y: batch_y,is_training:FLAGS.is_training,keep_prob:FLAGS.keep_prob,learning_rate:FLAGS.learning_rate})

                if ((epoch+1) % FLAGS.display_step == 0) or (epoch==0) :
                    if not((FLAGS.display_step==FLAGS.epochs) and (epoch==0)):

                        # -- Calculate batch loss and accuracy after a specific epoch on the train and test set --

                        avg_cost,avg_acc,l1_norm_no_go,l1_norm_go = sess.run([total_loss, accuracy,norm_no_go_connections,norm_go_connections], feed_dict={X: X_train,Y: y_train,
                                                               is_training:False,keep_prob:1.0})
                        train_c_total_loss.append(avg_cost)
                        train_c_accuracy.append(avg_acc)
                        c_l1_norm_go.append(l1_norm_go)
                        c_l1_norm_no_go.append(l1_norm_no_go)

                        if FLAGS.type_training!="":
                            avg_ce_loss,avg_additional_loss= sess.run([ce_loss, additional_loss], feed_dict={X: X_train,Y: y_train,is_training:False,keep_prob:1.0})
                            train_c_additional_loss.append(avg_additional_loss)
                            train_c_ce_loss.append(avg_ce_loss)

                        avg_cost,avg_acc = sess.run([total_loss, accuracy], feed_dict={X: X_test,Y: y_test,is_training:False,keep_prob:1.0})
                        test_c_total_loss.append(avg_cost)
                        test_c_accuracy.append(avg_acc)

                        if FLAGS.type_training!="": 
                            avg_ce_loss,avg_additional_loss= sess.run([ce_loss, additional_loss], feed_dict={X: X_test,Y: y_test,is_training:False,keep_prob:1.0})
                            test_c_additional_loss.append(avg_additional_loss)
                            test_c_ce_loss.append(avg_ce_loss)                

                        current_idx=len(train_c_total_loss)-1                   
                        print('| Epoch: {}/{} | Train: Loss {:.6f} Accuracy : {:.6f} '\
                        '| Test: Loss {:.6f} Accuracy : {:.6f}\n'.format(
                        epoch+1, FLAGS.epochs,train_c_total_loss[current_idx], train_c_accuracy[current_idx],test_c_total_loss[current_idx],test_c_accuracy[current_idx]))

            if FLAGS.save: saver.save(sess=sess, save_path=os.path.join(save_dir,"model"))

    end = time.time()
    elapsed=end - start
    print("Total time: {}h {}min {}sec ".format(time.gmtime(elapsed).tm_hour,
    time.gmtime(elapsed).tm_min,
    time.gmtime(elapsed).tm_sec))   

    performances = {
                    'total_loss':train_c_total_loss,'test_total_loss':test_c_total_loss,
                    'acc':train_c_accuracy,'test_acc':test_c_accuracy
                    }

    performances['norm_go']=c_l1_norm_go
    performances['norm_no_go']=c_l1_norm_no_go

    if FLAGS.type_training!="":      
        performances['additional_loss']=train_c_additional_loss
        performances['test_additional_loss']=test_c_additional_loss
        performances['ce_loss']=train_c_ce_loss
        performances['test_ce_loss']=test_c_ce_loss


    return performances

def evaluate(save_dir):

    warnings.filterwarnings("ignore")
    os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"]=FLAGS.GPU_device[len(FLAGS.GPU_device)-1]
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 

    # Load the useful files to build the architecture
    print("Loading the connection matrix...")
    start = time.time()

    adj_matrix = pd.read_csv(os.path.join(FLAGS.dir_data,"adj_matrix.csv"),index_col=0)
    first_matrix_connection = pd.read_csv(os.path.join(FLAGS.dir_data,"first_matrix_connection_GO.csv"),index_col=0)
    csv_go = pd.read_csv(os.path.join(FLAGS.dir_data,"go_level.csv"),index_col=0)

    connection_matrix = []
    connection_matrix.append(np.array(first_matrix_connection.values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(7)].loc[lambda x: x==1].index,csv_go[str(6)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(6)].loc[lambda x: x==1].index,csv_go[str(5)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(5)].loc[lambda x: x==1].index,csv_go[str(4)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(4)].loc[lambda x: x==1].index,csv_go[str(3)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(3)].loc[lambda x: x==1].index,csv_go[str(2)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.ones((FLAGS.n_hidden_6, FLAGS.n_classes),dtype=np.float32))

    end = time.time()
    elapsed=end - start
    print("Total time: {}h {}min {}sec".format(time.gmtime(elapsed).tm_hour,
    time.gmtime(elapsed).tm_min,
    time.gmtime(elapsed).tm_sec))

    # Load the data
    print("Loading the test dataset...")

    loaded = np.load(os.path.join(FLAGS.dir_data,"X_test.npz"))
    X_test = loaded['x']
    y_test = loaded['y']
    if FLAGS.n_classes>=2:
        y_test=to_categorical(y_test)

    end = time.time()
    elapsed=end - start
    print("Total time: {}h {}min {}sec".format(time.gmtime(elapsed).tm_hour,
    time.gmtime(elapsed).tm_min,
    time.gmtime(elapsed).tm_sec))


    # Launch the model
    print("Launching the evaluation")
    if FLAGS.type_training != "":
        print("with {} and ALPHA={}".format(FLAGS.type_training,FLAGS.alpha))

    tf.reset_default_graph() 
   
    # -- Inputs of the model --
    X = tf.placeholder(tf.float32, shape=[None, FLAGS.n_input])
    Y = tf.placeholder(tf.float32, shape=[None, FLAGS.n_classes])

    # -- Hyperparameters of the neural network --
    is_training = tf.placeholder(tf.bool,name="is_training") # Batch Norm hyperparameter
    keep_prob = tf.placeholder(tf.float32, name="keep_prob") # Dropout hyperparameter

    network=BaseModel(X=X,n_input=FLAGS.n_input,n_classes=FLAGS.n_classes,
        n_hidden_1=FLAGS.n_hidden_1,n_hidden_2=FLAGS.n_hidden_2,n_hidden_3=FLAGS.n_hidden_3,n_hidden_4=FLAGS.n_hidden_4,
        n_hidden_5=FLAGS.n_hidden_5,n_hidden_6=FLAGS.n_hidden_6,keep_prob=keep_prob,is_training=is_training) # Model instantiation
    pred = network()

    # -- Loss function --

    # ---- CE loss  ----
    # Compute the average of the loss across all the dimensions
    if FLAGS.n_classes>=2:
        ce_loss = f.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=Y)) 
    else:
        ce_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pred, labels=Y))
    
    # ---- Regularization loss (LGO, L2, L1) ----
    additional_loss = 0
    if FLAGS.type_training=="LGO":
        for idx,weight in enumerate(network.weights.values()):
            additional_loss+=l2_loss_func(weight*(1-connection_matrix[idx])) # Penalization of the noGO connections
    elif FLAGS.type_training=="L2" :
        for weight in network.weights.values():
            additional_loss += l2_loss_func(weight)
    elif FLAGS.type_training=="L1" :
        for idx,weight in enumerate(network.weights.values()):
            additional_loss+=l1_loss_func(weight)

    # ---- Total loss  ----
    if FLAGS.type_training!='' :
        total_loss = ce_loss + FLAGS.alpha*additional_loss
    else:
        total_loss = ce_loss

    # -- Compute the prediction error --
    if FLAGS.n_classes>=2:
        correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(Y, 1))
    else:
        sig_pred=tf.nn.sigmoid(pred)
        sig_pred=tf.cast(sig_pred>0.5,dtype=tf.int64)
        ground_truth=tf.cast(Y,dtype=tf.int64)
        correct_prediction = tf.equal(sig_pred,ground_truth)

    # -- Calculate the accuracy across all the given batches and average them out --
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  

    # -- Configure the use of the gpu --
    config = tf.ConfigProto(log_device_placement=False,allow_soft_placement=True)
    #config.gpu_options.allow_growth = True, log_device_placement=True

    if FLAGS.restore : saver = tf.train.Saver()

    start = time.time()

    with tf.device(FLAGS.GPU_device):
        with tf.Session(config=config) as sess: 
            if  FLAGS.restore:
                saver.restore(sess,os.path.join(save_dir,"model")) 

            # -- Calculate the final loss and the final accuracy on the test set --

            avg_cost,avg_acc = sess.run([total_loss, accuracy], feed_dict={X: X_test,Y: y_test,is_training:FLAGS.is_training,keep_prob:1})          
         
            print('Test loss {:.6f}, test accuracy : {:.6f}\n'.format(avg_cost,avg_acc))

    end = time.time()
    elapsed=end - start
    print("Total time: {}h {}min {}sec ".format(time.gmtime(elapsed).tm_hour,
    time.gmtime(elapsed).tm_min,
    time.gmtime(elapsed).tm_sec))   

    return

def predict(save_dir):

    warnings.filterwarnings("ignore")
    os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"]=FLAGS.GPU_device[len(FLAGS.GPU_device)-1]
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 

    # Load the useful files to build the architecture
    print("Loading the connection matrix...")
    start = time.time()

    adj_matrix = pd.read_csv(os.path.join(FLAGS.dir_data,"adj_matrix.csv"),index_col=0)
    first_matrix_connection = pd.read_csv(os.path.join(FLAGS.dir_data,"first_matrix_connection_GO.csv"),index_col=0)
    csv_go = pd.read_csv(os.path.join(FLAGS.dir_data,"go_level.csv"),index_col=0)

    connection_matrix = []
    connection_matrix.append(np.array(first_matrix_connection.values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(7)].loc[lambda x: x==1].index,csv_go[str(6)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(6)].loc[lambda x: x==1].index,csv_go[str(5)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(5)].loc[lambda x: x==1].index,csv_go[str(4)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(4)].loc[lambda x: x==1].index,csv_go[str(3)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.array(adj_matrix.loc[csv_go[str(3)].loc[lambda x: x==1].index,csv_go[str(2)].loc[lambda x: x==1].index].values,dtype=np.float32))
    connection_matrix.append(np.ones((FLAGS.n_hidden_6, FLAGS.n_classes),dtype=np.float32))

    end = time.time()
    elapsed=end - start
    print("Total time: {}h {}min {}sec".format(time.gmtime(elapsed).tm_hour,
    time.gmtime(elapsed).tm_min,
    time.gmtime(elapsed).tm_sec))

    # Load the data
    print("Loading the test dataset...")

    loaded = np.load(os.path.join(FLAGS.dir_data,"X_test.npz"))
    X_test = loaded['x']
    y_test = loaded['y']
    if FLAGS.n_classes>=2:
        y_test=to_categorical(y_test)

    end = time.time()
    elapsed=end - start
    print("Total time: {}h {}min {}sec".format(time.gmtime(elapsed).tm_hour,
    time.gmtime(elapsed).tm_min,
    time.gmtime(elapsed).tm_sec))


    # Launch the model
    print("Launching the evaluation")
    if FLAGS.type_training != "":
        print("with {} and ALPHA={}".format(FLAGS.type_training,FLAGS.alpha))

    tf.reset_default_graph() 
   
    # -- Inputs of the model --
    X = tf.placeholder(tf.float32, shape=[None, FLAGS.n_input])
    Y = tf.placeholder(tf.float32, shape=[None, FLAGS.n_classes])

    # -- Hyperparameters of the neural network --
    is_training = tf.placeholder(tf.bool,name="is_training") # Batch Norm hyperparameter
    keep_prob = tf.placeholder(tf.float32, name="keep_prob") # Dropout hyperparameter

    network=BaseModel(X=X,n_input=FLAGS.n_input,n_classes=FLAGS.n_classes,
        n_hidden_1=FLAGS.n_hidden_1,n_hidden_2=FLAGS.n_hidden_2,n_hidden_3=FLAGS.n_hidden_3,n_hidden_4=FLAGS.n_hidden_4,
        n_hidden_5=FLAGS.n_hidden_5,n_hidden_6=FLAGS.n_hidden_6,keep_prob=keep_prob,is_training=is_training) # Model instantiation
    pred = network()
    # -- Compute the prediction error --
    if FLAGS.n_classes>=2:
        y_hat = tf.argmax(pred,1)
    else:
        y_hat = tf.nn.sigmoid(pred)
        y_hat = tf.cast(pred>0.5,dtype=tf.int64)

    # -- Configure the use of the gpu --
    config = tf.ConfigProto(log_device_placement=False,allow_soft_placement=True)
    #config.gpu_options.allow_growth = True, log_device_placement=True

    if FLAGS.restore : saver = tf.train.Saver()

    start = time.time()

    with tf.device(FLAGS.GPU_device):
        with tf.Session(config=config) as sess: 
            if  FLAGS.restore:
                saver.restore(sess,os.path.join(save_dir,"model")) 
            
            # -- Predict the outcome predictions of the samples from the test set --

            y_hat = sess.run([y_hat], feed_dict={X: X_test,Y: y_test,is_training:FLAGS.is_training,keep_prob:1})          

    end = time.time()
    elapsed=end - start
    print("Total time: {}h {}min {}sec ".format(time.gmtime(elapsed).tm_hour,
    time.gmtime(elapsed).tm_min,
    time.gmtime(elapsed).tm_sec))   

    return y_hat


def main(_):

    save_dir=os.path.join(FLAGS.log_dir,'MLP_DP={}_BN={}_EPOCHS={}_OPT={}'.format(FLAGS.keep_prob,FLAGS.bn,FLAGS.epochs,FLAGS.lr_method))

    if FLAGS.type_training!="" :
        save_dir=save_dir+'_{}_ALPHA={}'.format(FLAGS.type_training,FLAGS.alpha)
    
    if FLAGS.processing=="train":

        start_full = time.time()
        
        if not(os.path.isdir(save_dir)):
            os.mkdir(save_dir)

        performances=train(save_dir=save_dir)   

        with open(os.path.join(save_dir,"histories.txt"), "wb") as fp:
            #Pickling
            pickle.dump(performances, fp)

        end = time.time()
        elapsed =end - start_full
        print("Total time full process: {}h {}min {}sec".format(time.gmtime(elapsed).tm_hour,
        time.gmtime(elapsed).tm_min,
        time.gmtime(elapsed).tm_sec))
        
    elif FLAGS.processing=="evaluate":
        
        evaluate(save_dir=save_dir)
        
    elif FLAGS.processing=="predict":
        
        np.savez_compressed(os.path.join(save_dir,'y_test_hat'),y_hat=predict(save_dir=save_dir))
    
if __name__ == "__main__":
    tf.app.run()