synchro.py 37.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
"""This plugin provides an implementation of the action-based
synchronisation from algebras of Petri nets. With respect to the usual
definition of synchronisation, the plugin is slightly more general in
that it does not impose a fixed arity for action. The extensions are
as follows:

  * class `Action` corresponds to a synchronisable action, it has a
    name, a send/receive flag and a list of parameters. Actions have
    no predetermined arities, only conjugated actions with the same
    arity will be able to synchronise
  * class `MultiAction` corresponds to a multiset of actions. It is
    forbidden to build a multiaction that holds a pair of conjugated
    actions because this leads to infinite nets upon synchronisation
  * the constructor of `Transition` accepts a parameter `actions` that
    is a collection of instances of `Action`, this multiaction is
    added in the attribute `actions` of the transition
  * PetriNet is given new methods: `synchronise` to perform the
    synchronisation, `restrict` to perform the restriction (ie, remove
    transitions with a given action) and `scope` for the scoping (ie,
    synchronisation followed by restriction)

### Example ###

Let's start with an example: we build a Petri net with two transitions
in parallel that will be synchronised later on.

>>> import snakes.plugins
>>> snakes.plugins.load('synchro', 'snakes.nets', 'nets')
<module ...>
>>> from nets import *
>>> n = PetriNet('N')
>>> n.add_place(Place('e1'))
>>> n.add_place(Place('x1'))
>>> m1 = [Action('a', True, [Variable('x'), Value(2)]),
...       Action('b', True, [Value(3), Variable('y')]),
...       Action('c', False, [Variable('x'), Variable('y')])]
>>> print(', '.join(str(action) for action in m1))
a!(x,2), b!(3,y), c?(x,y)
>>> n.add_transition(Transition('t1', guard=Expression('x!=y'), actions=m1))
>>> n.add_input('e1', 't1', Variable('x'))
>>> n.add_output('x1', 't1', Variable('z'))
>>> n.add_place(Place('e2'))
>>> n.add_place(Place('x2'))
>>> m2 = [Action('a', False, [Variable('w'), Variable('y')]),
...       Action('d', False, [Variable('z')])]
>>> print(', '.join(str(action) for action in m2))
a?(w,y), d?(z)
>>> n.add_transition(Transition('t2', guard=Expression('z>0'), actions=m2))
>>> n.add_input('e2', 't2', Variable('w'))
>>> n.add_output('x2', 't2', Variable('z'))
>>> n.transition('t1').vars() == set(['x', 'y', 'z'])
True

On transition `t1`, we have put a multiaction that can be abbreviated
as `a!(x,2), a!(3,y), b?(x,y)` and can be interpreted as three
synchronous communication performed atomically and simultaneously when
`t1` fires:

  * `a!(x,2)` emits `(x,2)` on channel `a`
  * `b!(2,y)` emits `(2,y)` on channel `b`
  * `c?(x,y)` receives `(x,y)` on channel `c`

And similarly for transition `t2` that has two actions:

  * `a?(w,y)` receives `(w,y)` on channel `a`
  * `d?(z)` receives `z` on channel `d`

Thus, `t1` and `t2` hold _conjugated actions_, which are matching
emitting and receiving actions `a!(x,2)` and `a?(x,y)`. So we can
synchronise the net on `a` which builds a new transition whose firing
is exactly equivalent to the simultaneous firing of `t1` and `t2`
performing the communications over channel `a`.

>>> n.synchronise('a')
>>> t = [t for t in n.transition() if t.name not in ('t1', 't2')][0]
>>> print(t.name)
a(w,2)@(t1[x=w,y=e,z=f]+t2[y=2])
>>> print(t.guard)
((w != e)) and ((z > 0))
>>> print(', '.join(sorted(str(action) for action in t.actions)))
b!(3,e), c?(w,e), d?(z)

The second statement `t = ...` retrieves the new transition then we
print its name and guard. The names can be read as: this is the result
of execution action `a(w,2)` on `t1` substituted by `{x->w, y->e,
z->f}` and `t2` substituted by `{y->2}`. Indeed, both transitions have
variables `y` and `z`in common, so they are replaced in `t1` to avoid
names clashes, then, actions a can be `a!(x,2)` and `a?(w,y)` can be
matched by considering `x=w` and `y=2` which yields the rest of the
substitutions for the transitions. The resulting transition results
from the merging of the unified transitions, its guard is the `and` of
the guards of the merged transitions and its multiaction is the union
of the multiactions of the merged transitions minus the actions that
did synchronise.

The net now has three transitions: `t1`, `t2` and the new one
resulting from the synchronisation. This allows both synchronous and
asynchronous behaviour:

>>> for t in sorted(t.name for t in n.transition()) :
...     print(t)
a(w,2)@(t1[x=w,y=e,z=f]+t2[y=2])
t1
t2

If we want to force the synchronous behaviour, we have to restrict
over `'a'` which removes any transition that hold an action `a?(...)`
or `a!(...)`. In practice, this is what we want and so we may have
used method `n.scope('a')` to apply directly the synchronisation
followed by the restriction.

>>> n.restrict('a')
>>> for t in sorted(t.name for t in n.transition()) :
...     print(t)
a(w,2)@(t1[x=w,y=e,z=f]+t2[y=2])
"""

from snakes import ConstraintError
from snakes.data import Substitution, WordSet, iterate
from snakes.nets import Value, Variable
from snakes.pnml import Tree
import snakes.plugins
from snakes.plugins import new_instance
from snakes.compat import *

class Action (object) :
    """Models one action with a name, a direction (send or receive)
    and parameters.
    """
    def __init__ (self, name, send, params) :
        """Constructor. The direction is passed as a Boolean: `True`
        for a send action, `False` for a receive.

        @param name: the name of the action
        @type name: `str`
        @param send: a flag indicating whether this is a send or
            receive action
        @type send: `bool`
        @param params: the list of parameters that must me instances
            of `Variable` or `Value`
        @type params: `list`
        """
        self.name = name
        self.send = send
        self.params = list(params)
    __pnmltag__ = "action"
    # apidoc skip
    def __pnmldump__ (self) :
        """
        >>> Action('a', True, [Value(1), Variable('x')]).__pnmldump__()
        <?xml version="1.0" encoding="utf-8"?>
        <pnml>...
         <action name="a" send="True">
          <value>
           <object type="int">1</object>
          </value>
          <variable>x</variable>
         </action>
        </pnml>
        """
        result = Tree(self.__pnmltag__, None,
                      name=self.name,
                      send=str(self.send))
        for param in self.params :
            result.add_child(Tree.from_obj(param))
        return result
    # apidoc stop
    @classmethod
    def __pnmlload__ (cls, tree) :
        """
        >>> t = Action('a', True, [Value(1), Variable('x')]).__pnmldump__()
        >>> Action.__pnmlload__(t)
        Action('a', True, [Value(1), Variable('x')])
        """
        params = [Tree.to_obj(child) for child in tree.children]
        return cls(tree["name"], tree["send"] == "True", params)
    def __str__ (self) :
        """
        >>> a = Action('a', True, [Value(1), Variable('x')])
        >>> str(a)
        'a!(1,x)'
        >>> a.send = False
        >>> str(a)
        'a?(1,x)'
        """
        if self.send :
            return "%s!(%s)" % (self.name, ",".join([str(p) for p in self]))
        else :
            return "%s?(%s)" % (self.name, ",".join([str(p) for p in self]))
    def __repr__ (self) :
        """
        >>> a = Action('a', True, [Value(1), Variable('x')])
        >>> repr(a)
        "Action('a', True, [Value(1), Variable('x')])"
        >>> a.send = False
        >>> repr(a)
        "Action('a', False, [Value(1), Variable('x')])"
        """
        return "%s(%s, %s, [%s])" % (self.__class__.__name__, repr(self.name),
                                     str(self.send),
                                     ", ".join([repr(p) for p in self]))
    def __len__ (self) :
        """Return the number of parameters, aka the arity of the action.

        >>> len(Action('a', True, [Value(1), Variable('x')]))
        2

        @return: the arity of the action
        @rtype: non negative `int`
        """
        return len(self.params)
    def __iter__ (self) :
        """Iterate on the parameters

        >>> list(Action('a', True, [Value(1), Variable('x')]))
        [Value(1), Variable('x')]
        """
        for action in self.params :
            yield action
    def __eq__ (self, other) :
        """Two actions are equal if they have the same name, same send
        flags and same parameters.

        >>> Action('a', True, [Value(1), Variable('x')]) == Action('a', True, [Value(1), Variable('x')])
        True
        >>> Action('a', True, [Value(1), Variable('x')]) == Action('b', True, [Value(1), Variable('x')])
        False
        >>> Action('a', True, [Value(1), Variable('x')]) == Action('a', False, [Value(1), Variable('x')])
        False
        >>> Action('a', True, [Value(1), Variable('x')]) == Action('a', True, [Value(2), Variable('x')])
        False
        >>> Action('a', True, [Value(1), Variable('x')]) == Action('a', True, [Value(1)])
        False

        @param other: the action to compare
        @type other: `Action`
        @return: `True` if the two actions are equal, `False`
            otherwise
        @rtype: `bool`
        """
        if self.name != other.name :
            return False
        elif self.send != other.send :
            return False
        elif len(self.params) != len(other.params) :
            return False
        for p, q in zip(self.params, other.params) :
            if p != q :
                return False
        return True
    def __ne__ (self, other) :
        return not (self == other)
    def copy (self, subst=None) :
        """Copy the action, optionally substituting its parameters.

        >>> a = Action('a', True, [Variable('x'), Value(2)])
        >>> a.copy()
        Action('a', True, [Variable('x'), Value(2)])
        >>> a = Action('a', True, [Variable('x'), Value(2)])
        >>> a.copy(Substitution(x=Value(3)))
        Action('a', True, [Value(3), Value(2)])

        @param subst: if not `None`, a substitution to apply to the
            parameters of the copy mapping variables names to `Value`
            or `Variable`
        @type subst: `Substitution`
        @return: a copy of the action, substituted by `subst` if not
            `None`
        @rtype: `Action`
        """
        result = self.__class__(self.name, self.send,
                                [p.copy() for p in self.params])
        if subst is not None :
            result.substitute(subst)
        return result
    def substitute (self, subst) :
        """Substitute the parameters according to `subst`

        >>> a = Action('a', True, [Variable('x'), Value(2)])
        >>> a.substitute(Substitution(x=Value(3)))
        >>> a
        Action('a', True, [Value(3), Value(2)])

        @param subst: a substitution to apply to the parameters,
            mapping variables names to `Value` or `Variable`
        @type subst: `Substitution`
        """
        for i, p in enumerate(self.params) :
            if isinstance(p, Variable) and p.name in subst :
                self.params[i] = subst(p.name)
    def vars (self) :
        """
        >>> Action('a', True, [Value(3), Variable('x'), Variable('y'), Variable('x')]).vars() == set(['x', 'y'])
        True

        @return: the set of variable names appearing in the parameters
            of the action
        @rtype: `set` of `str`
        """
        return set(p.name for p in self.params if isinstance(p, Variable))
    def __and__ (self, other) :
        """Compute an unification of two conjugated actions.

        An unification is a `Substitution` that maps variable names to
        `Variable` or `Values`. If both actions are substituted by
        this unification, their parameters lists become equal. If no
        unification can be found, `ConstraintError` is raised (or,
        rarely, `DomainError` depending on the cause of the failure).

        >>> s = Action('a', True, [Value(3), Variable('x'), Variable('y'), Variable('x')])
        >>> r = Action('a', False, [Value(3), Value(2), Variable('t'), Variable('z')])
        >>> u = s & r
        >>> u == Substitution(y=Variable('t'), x=Value(2), z=Value(2))
        True
        >>> s.substitute(u)
        >>> r.substitute(u)
        >>> s.params == r.params
        True
        >>> s.params
        [Value(3), Value(2), Variable('t'), Value(2)]
        >>> s = Action('a', True, [Value(2), Variable('x'), Variable('y'), Variable('x')])
        >>> r = Action('a', False, [Value(3), Value(2), Variable('t'), Variable('z')])
        >>> try : s & r
        ... except ConstraintError : print(sys.exc_info()[1])
        incompatible values
        >>> r = Action('a', False, [Value(2), Value(2), Variable('t')])
        >>> try : s & r
        ... except ConstraintError : print(sys.exc_info()[1])
        arities do not match
        >>> r = Action('b', False, [Value(3), Value(2), Variable('t'), Variable('z')])
        >>> try : s & r
        ... except ConstraintError : print(sys.exc_info()[1])
        actions not conjugated
        >>> r = Action('a', True, [Value(3), Value(2), Variable('t'), Variable('z')])
        >>> try : s & r
        ... except ConstraintError : print(sys.exc_info()[1])
        actions not conjugated

        @param other: the other action to unify with
        @type other: `Action`
        @return: a substitution that unify both actions
        @rtype: `Substitution`
        """
        if (self.name != other.name) or (self.send == other.send) :
            raise ConstraintError("actions not conjugated")
        elif len(self) != len(other) :
            raise ConstraintError("arities do not match")
        result = Substitution()
        for x, y in zip(self.params, other.params) :
            # apply the unifier already computed
            if isinstance(x, Variable) and x.name in result :
                x = result(x.name)
            if isinstance(y, Variable) and y.name in result :
                y = result(y.name)
            # unify the current pair of parameters
            if isinstance(x, Value) and isinstance(y, Value) :
                if x.value != y.value :
                    raise ConstraintError("incompatible values")
            elif isinstance(x, Variable) and isinstance(y, Value) :
                result += Substitution({x.name : y.copy()})
            elif isinstance(x, Value) and isinstance(y, Variable) :
                result += Substitution({y.name : x.copy()})
            elif isinstance(x, Variable) and isinstance(y, Variable) :
                if x.name != y.name :
                    result += Substitution({x.name : y.copy()})
            else :
                raise ConstraintError("unexpected action parameter")
        return result

class MultiAction (object) :
    """Models a multiset of actions.
    """
    def __init__ (self, actions) :
        """The only restriction when building a multiaction is to
        avoid putting two conjugated actions in it. Indeed, this may
        lead to infinite Petri nets upon synchronisation. For example,
        consider two transitions `t1` and `t2` with both `a?()` and
        `a!()` in their multiactions. We can synchronise say `a?()`
        from `t1` with `a!()` from `t2` yielding a transition whose
        multiaction has `a!()` from `t1` and `a?() from `t2` and thus
        can be synchronised with `t1` or `t2`, yielding a new
        transition with `a?()` and `a!()`, etc. Fortunately, it makes
        little sense to let a transition synchronise with itself, so
        this situation is simply forbidden.

        >>> try : MultiAction([Action('a', True, [Variable('x')]),
        ...                    Action('a', False, [Value(2)])])
        ... except ConstraintError : print(sys.exc_info()[1])
        conjugated actions in the same multiaction

        @param actions: a collection of `Action` instances with no
            conjugated actions in it
        @type actions: `iterable`
        """
        self._actions = []
        self._sndrcv = {}
        self._count = {}
        for act in actions :
            self.add(act)
    __pnmltag__ = "multiaction"
    # apidoc stop
    def __pnmldump__ (self) :
        """
        >>> MultiAction([Action('a', True, [Variable('x')]),
        ...              Action('b', False, [Variable('y'), Value(2)])
        ...             ]).__pnmldump__()
        <?xml version="1.0" encoding="utf-8"?>
        <pnml>...
         <multiaction>
          <action name="a" send="True">
           <variable>x</variable>
          </action>
          <action name="b" send="False">
           <variable>y</variable>
           <value>
            <object type="int">2</object>
           </value>
          </action>
         </multiaction>
        </pnml>
        """
        return Tree(self.__pnmltag__, None,
                    *(Tree.from_obj(action) for action in self._actions))
    @classmethod
    def __pnmlload__ (cls, tree) :
        """
        >>> t = MultiAction([Action('a', True, [Variable('x')]),
        ...                  Action('b', False, [Variable('y'), Value(2)])
        ...                 ]).__pnmldump__()
        >>> MultiAction.__pnmlload__(t)
        MultiAction([Action('a', True, [Variable('x')]),
                     Action('b', False, [Variable('y'), Value(2)])])
        """
        return cls(child.to_obj() for child in tree.children)
    def __repr__ (self) :
        """
        >>> MultiAction([Action('a', True, [Variable('x')]),
        ...              Action('b', False, [Variable('y'), Value(2)])])
        MultiAction([Action('a', True, [Variable('x')]),
                     Action('b', False, [Variable('y'), Value(2)])])
        """
        return "%s([%s])" % (self.__class__.__name__,
                             ", ".join(repr(act) for act in self._actions))
    def __str__ (self) :
        """
        >>> str(MultiAction([Action('a', True, [Variable('x')]),
        ...                  Action('b', False, [Variable('y'), Value(2)])]))
        '[a!(x), b?(y,2)]'
        """
        return "[%s]" % ", ".join(str(act) for act in self._actions)
    def send (self, name) :
        """Returns the send flag of the action `name` in this
        multiaction.

        This value is unique as conjugated actions are forbidden in
        the same multiaction.

        >>> m = MultiAction([Action('a', True, [Variable('x')]),
        ...                  Action('b', False, [Variable('y'), Value(2)])])
        >>> m.send('a'), m.send('b')
        (True, False)
        """
        return self._sndrcv[name]
    def add (self, action) :
        """Add an action to the multiaction.

        This may raise `ConstraintError` if the added action is
        conjugated to one that already belongs to the multiaction.

        @param action: the action to add
        @type action: `Action`
        """
        if self._sndrcv.get(action.name, action.send) != action.send :
            raise ConstraintError("conjugated actions in the same multiaction")
        self._sndrcv[action.name] = action.send
        self._count[action.name] = self._count.get(action.name, 0) + 1
        self._actions.append(action)
    def remove (self, action) :
        """Remove an action from the multiaction.

        This may raise `ValueError` if the removed action does belongs
        to the multiaction.

        @param action: the action to remove
        @type action: `Action`
        """
        self._actions.remove(action)
        self._count[action.name] -= 1
        if self._count[action.name] == 0 :
            del self._count[action.name]
            del self._sndrcv[action.name]
    def __iter__ (self) :
        """Iterate over the actions in the multiaction.

        >>> list(MultiAction([Action('a', True, [Variable('x')]),
        ...                   Action('b', False, [Variable('y'), Value(2)])]))
        [Action('a', True, [Variable('x')]),
         Action('b', False, [Variable('y'), Value(2)])]
        """
        for action in self._actions :
            yield action
    def __len__ (self) :
        """Return the number of actions in a multiaction.

        >>> len(MultiAction([Action('a', True, [Variable('x')]),
        ...                  Action('b', False, [Variable('y'), Value(2)])]))
        2

        @return: the number of contained actions
        @rtype: non negative `int`
        """
        return len(self._actions)
    def substitute (self, subst) :
        """Substitute bu `subt` all the actions in the multiaction.

        >>> m = MultiAction([Action('a', True, [Variable('x')]),
        ...                  Action('b', False, [Variable('y'), Variable('x')])])
        >>> m.substitute(Substitution(x=Value(4)))
        >>> m
        MultiAction([Action('a', True, [Value(4)]),
                     Action('b', False, [Variable('y'), Value(4)])])
        """
        for action in self._actions :
            action.substitute(subst)
    def copy (self, subst=None) :
        """Copy the multiaction (and the actions is contains) optionally
        substituting it.

        @param subst: if not `None`, the substitution to apply to the
            copy.
        @type subst: `Substitution`
        @return: a copy of the multiaction, optionally substituted
        @rtype: `MultiAction`
        """
        return self.__class__(act.copy(subst) for act in self._actions)
    def __contains__ (self, action) :
        """Search an action in the multiaction.

        The searched action may be a complete `Action`, just an action
        name, or a pair `(name, send_flag)`.

        >>> m = MultiAction([Action('a', True, [Variable('x'), Value(2)]),
        ...                  Action('a', True, [Value(3), Variable('y')]),
        ...                  Action('b', False, [Variable('x'), Variable('y')])])
        >>> 'a' in m, 'b' in m, 'c' in m
        (True, True, False)
        >>> ('a', True) in m, ('a', False) in m
        (True, False)
        >>> Action('a', True, [Variable('x'), Value(2)]) in m
        True
        >>> Action('a', True, [Variable('x')]) in m
        False
        >>> Action('a', False, [Variable('x'), Value(2)]) in m
        False
        >>> Action('c', True, [Variable('x'), Value(2)]) in m
        False

        @param action: an complete action, or its name or its name and
            send flag
        @type action: `Action`
        @return: `True` if the specified action was found, `False`
            otherwise
        @rtype: `bool`
        """
        if isinstance(action, Action) :
            return action in self._actions
        elif isinstance(action, tuple) and len(action) == 2 :
            return (action[0] in self._sndrcv
                    and self._sndrcv[action[0]] == action[1])
        elif isinstance(action, str) :
            return action in self._count
        else :
            raise ValueError("invalid action specification")
    def __add__ (self, other) :
        """Create a multiaction by adding the actions of two others.

        >>> m = MultiAction([Action('a', True, [Variable('x'), Value(2)]),
        ...                  Action('a', True, [Value(3), Variable('y')]),
        ...                  Action('b', False, [Variable('x'), Variable('y')])])
        >>> m + m
        MultiAction([Action('a', True, [Variable('x'), Value(2)]),
                     Action('a', True, [Value(3), Variable('y')]),
                     Action('b', False, [Variable('x'), Variable('y')]),
                     Action('a', True, [Variable('x'), Value(2)]),
                     Action('a', True, [Value(3), Variable('y')]),
                     Action('b', False, [Variable('x'), Variable('y')])])
        >>> m + Action('c', True, [])
        MultiAction([Action('a', True, [Variable('x'), Value(2)]),
                     Action('a', True, [Value(3), Variable('y')]),
                     Action('b', False, [Variable('x'), Variable('y')]),
                     Action('c', True, [])])

        @param other: the other multiaction to combine or a single
            action
        @type other: `MultiAction` or `Action`
        @return: the concatenated multiaction
        @rtype: `MultiAction`
        """
        if isinstance(other, Action) :
            other = self.__class__([other])
        result = self.copy()
        for action in other._actions :
            result.add(action)
        return result
    def __sub__ (self, other) :
        """Create a multiaction by substracting the actions of two
        others.

        >>> m = MultiAction([Action('a', True, [Variable('x'), Value(2)]),
        ...                  Action('a', True, [Value(3), Variable('y')]),
        ...                  Action('b', False, [Variable('x'), Variable('y')])])
        >>> m - m
        MultiAction([])
        >>> m - Action('b', False, [Variable('x'), Variable('y')])
        MultiAction([Action('a', True, [Variable('x'), Value(2)]),
                     Action('a', True, [Value(3), Variable('y')])])

        @param other: the other multiaction to combine or a single
            action
        @type other: `MultiAction` or `Action`
        @return: the resulting multiaction
        @rtype: `MultiAction`
        """
        if isinstance(other, Action) :
            other = self.__class__([other])
        result = self.copy()
        for action in other._actions :
            result.remove(action)
        return result
    def vars (self) :
        """Return the set of variable names used in all the actions of
        the multiaction.

        >>> MultiAction([Action('a', True, [Variable('x'), Value(2)]),
        ...              Action('a', True, [Value(3), Variable('y')]),
        ...              Action('b', False, [Variable('x'), Variable('z')])]).vars() == set(['x', 'y', 'z'])
        True

        @return: the set of variable names
        @rtype: `set` of `str`
        """
        result = set()
        for action in self._actions :
            result.update(action.vars())
        return result
    def names (self) :
        """Return the set of action names used in the multiaction.

        >>> MultiAction([Action('a', True, [Variable('x'), Value(2)]),
        ...              Action('a', True, [Value(3), Variable('y')]),
        ...              Action('b', False, [Variable('x'), Variable('z')])]).names() == set(['a', 'b'])
        True

        @return: the set of variable names
        @rtype: `set` of `str`
        """
        return set([action.name for action in self._actions])
    def synchronise (self, other, name, common, allnames) :
        """Search all the possible synchronisation on an action name with
        another multiaction.

        This method returns an iterator that yields for each possible
        synchronisation a 4-tuple whose components are:


          * the sending action that did synchronise, it is already
            unified, so the corresponding receiving action is just
            the same with the reversed send flag
          * the multiaction resulting from the synchronisation that
            is also unified
          * the substitution that must be applied to the transition
            that provided the sending action
          * the substitution that must be applied to the transition
            that provided the receiving action

        >>> m = MultiAction([Action('a', True, [Variable('x'), Value(2)]),
        ...                  Action('a', True, [Value(3), Variable('y')]),
        ...                  Action('b', False, [Variable('x'), Variable('y')])])
        >>> n = MultiAction([Action('a', False, [Variable('w'), Variable('y')]),
        ...                  Action('c', False, [Variable('y')])])
        >>> _m, _n = m.vars(), n.vars()
        >>> for a, x, u, v in m.synchronise(n, 'a', _m & _n, _m | _n) :
        ...    print('%s %s' % (str(a), str(x)))
        ...    print(list(sorted(u.items())))
        ...    print(list(sorted(v.items())))
        a!(w,2) [a!(3,d), b?(w,d), c?(2)]
        [('x', Variable('w')), ('y', Variable('d'))]
        [('x', Variable('w')), ('y', Value(2))]
        a!(3,y) [a!(x,2), b?(x,y), c?(y)]
        [('d', Variable('y')), ('w', Value(3)), ('y', Variable('d'))]
        [('d', Variable('y')), ('w', Value(3))]

        @param other: the other multiaction to synchronise with
        @type other: `MultiAction`
        @param name: the name of the action to synchronise on
        @type name: `str`
        @param common: the set of names in common on both transitions
        @type common: `set`
        @param allnames: the set of all names involved in the transitions
        @type allnames: `set`
        @return: an iterator over the possible synchronisations
        @rtype: iterator of `tuple(Action, MultiAction, Substitution,
            Substitution)`
        """
        renamer = Substitution()
        if common :
            names = WordSet(set(allnames) | self.names() | other.names())
            for var in common :
                renamer += Substitution({var : Variable(names.fresh(add=True))})
        for left in (act for act in self._actions if act.name == name) :
            for right in (act for act in other._actions if act.name == name
                          if act.send != left.send) :
                _left = left.copy(renamer)
                try :
                    unifier = _left & right
                except :
                    continue
                _self = self.copy(renamer) - _left
                _self.substitute(unifier)
                _other = other - right
                _other.substitute(unifier)
                yield (_left.copy(unifier), _self + _other,
                       unifier * renamer, unifier)

@snakes.plugins.plugin("snakes.nets")
def extend (module) :
    class Transition (module.Transition) :
        """Class `Transition` is extended to allow a keyword argument
        `actions` in several of its methods `__init__` and `copy` (to
        replace a multiaction upon copy).
        """
        # apidoc stop
        def __init__ (self, name, guard=None, **args) :
            self.actions = MultiAction(args.pop("actions", []))
            module.Transition.__init__(self, name, guard, **args)
        def vars (self) :
            return module.Transition.vars(self) | self.actions.vars()
        def substitute (self, subst) :
            module.Transition.substitute(self, subst)
            self.actions.substitute(subst)
        def copy (self, name=None, **args) :
            actions = args.pop("actions", None)
            result = module.Transition.copy(self, name, **args)
            if actions is None :
                result.actions = self.actions.copy()
            else :
                result.actions = MultiAction(actions)
            return result
        def __pnmldump__ (self) :
            """
            >>> m = MultiAction([Action('a', True, [Variable('x')]),
            ...                  Action('b', False, [Variable('y'), Value(2)])])
            >>> Transition('t', actions=m).__pnmldump__()
            <?xml version="1.0" encoding="utf-8"?>
            <pnml>...
             <transition id="t">
              <multiaction>
               <action name="a" send="True">
                <variable>x</variable>
               </action>
               <action name="b" send="False">
                <variable>y</variable>
                <value>
                 <object type="int">2</object>
                </value>
               </action>
              </multiaction>
             </transition>
            </pnml>
            """
            result = module.Transition.__pnmldump__(self)
            result.add_child(Tree.from_obj(self.actions))
            return result
        @classmethod
        def __pnmlload__ (cls, tree) :
            """
            >>> m = MultiAction([Action('a', True, [Variable('x')]),
            ...                  Action('b', False, [Variable('y'), Value(2)])])
            >>> t = Transition('t', actions=m).__pnmldump__()
            >>> Transition.__pnmlload__(t).actions
            MultiAction([Action('a', True, [Variable('x')]),
                         Action('b', False, [Variable('y'), Value(2)])])
            """
            result = new_instance(cls, module.Transition.__pnmlload__(tree))
            result.actions = Tree.to_obj(tree.child(MultiAction.__pnmltag__))
            return result
    class PetriNet (module.PetriNet) :
        def synchronise (self, name) :
            """Synchronise the net wrt `name`.

            @param name: the action name to be synchronised
            @type name: `str`
            @return: the synchronised Petri net
            @rtype: `PetriNet`
            """
            snd = []
            rcv = []
            for trans in self.transition() :
                if (name, True) in trans.actions :
                    snd.append(trans)
                elif (name, False) in trans.actions :
                    rcv.append(trans)
            loop = True
            done = set()
            while loop :
                loop = False
                for _snd in snd :
                    for _rcv in rcv :
                        if (_snd.name, _rcv.name) in done :
                            continue
                        try :
                            _s, _r = _snd.vars(), _rcv.vars()
                            new = _snd.actions.synchronise(_rcv.actions,
                                                           name,
                                                           _s & _r, _s | _r)
                        except ConstraintError :
                            continue
                        for a, m, s, r in new :
                            t = self._synchronise(
                                _snd, s.restrict(_snd.vars()),
                                _rcv, r.restrict(_rcv.vars()),
                                m, a)
                            if (name, True) in t.actions :
                                snd.append(t)
                                loop = True
                            elif (name, False) in t.actions :
                                rcv.append(t)
                                loop = True
                        done.add((_snd.name, _rcv.name))
        def _synchronise (self, snd, s, rcv, r, actions, sync) :
            def _str (binding) :
                return ",".join("%s=%s" % i for i in sorted(binding.items()))
            collect = []
            for trans, subst in ((snd, s), (rcv, r)) :
                new = "%s[%s]" % (trans.name, _str(subst))
                self.copy_transition(trans.name, new)
                collect.append(new)
                new = self.transition(new)
                for var, val in subst.items() :
                    if isinstance(val, Variable) :
                        new.substitute(Substitution({var : val.name}))
                    for place, label in new.input() :
                        if var in label.vars() :
                            self.remove_input(place.name, new.name)
                            self.add_input(place.name, new.name,
                                           label.replace(Variable(var), val))
                    for place, label in new.output() :
                        if var in label.vars() :
                            self.remove_output(place.name, new.name)
                            self.add_output(place.name, new.name,
                                            label.replace(Variable(var), val))
                new.substitute(subst)
            merged = ("%s@(%s)" %
                      (str(sync).replace("?", "").replace("!", ""),
                       "+".join(collect)))
            self.merge_transitions(merged, collect, actions=actions)
            for name in collect :
                self.remove_transition(name)
            return self.transition(merged)
        def restrict (self, name) :
            """Restrict the net wrt `name`.

            @param name: the action name to be synchronised
            @type name: `str`
            @return: the synchronised Petri net
            @rtype: `PetriNet`
            """
            removed = [trans.name for trans in self.transition()
                       if name in trans.actions]
            for trans in removed :
                self.remove_transition(trans)
        def scope (self,  name) :
            """Scope the net wrt `name`, this is equivalent to apply
            synchronisation followed by restriction on the same
            `name`.

            @param name: the action name to be synchronised
            @type name: `str`
            @return: the synchronised Petri net
            @rtype: `PetriNet`
            """

            self.synchronise(name)
            self.restrict(name)
        def merge_transitions (self, target, sources, **args) :
            """Accepts a keyword parameter `actions` to change the
            multiaction of the resulting transition. If `actions` is
            not given, the multiaction of the new transition is the
            sum of the multiactions of the merged transition.

            @keyword actions: the multiaction of the transition
                resulting from the merge
            @type actions: `MultiAction`
            """
            actions = args.pop("actions", None)
            module.PetriNet.merge_transitions(self, target, sources, **args)
            if actions is None :
                actions = MultiAction()
                for src in sources :
                    actions += self.transition(src).actions
                self.transition(target).actions = actions
            else :
                self.transition(target).actions = MultiAction(actions)
        def copy_transition (self, source, targets, **args) :
            """Accepts a keyword parameter `actions` to change the
            multiaction of the resulting transition. If `actions` is
            not given, the multiaction of the new transition is the
            the same multiaction as the copied transition.

            @keyword actions: the multiaction of the transition
                resulting from the copy
            @type actions: `MultiAction`
            """
            actions = args.pop("actions", None)
            module.PetriNet.copy_transition(self, source, targets, **args)
            if actions is None :
                actions = self.transition(source).actions
            else :
                actions = MultiAction(actions)
            old = self.transition(source)
            for trans in iterate(targets) :
                self.transition(trans).actions = actions.copy()
    return PetriNet, Transition, Action, MultiAction